User:Remig/plico/plicoCommonNT
< User:Remig | plico
Jump to navigation
Jump to search
This script contains routines used by some other scripts of the Plico suite involved with polynucleotide manipulation. It must be located in the same directory as any script that uses these routines.
Copy and paste the following into a text editor and save in your scripts folder as plicoNTcommon.spt.
# plicoNTcommon - Jmol script by Ron Mignery # v1.10 beta 4/12/2016 -axis is now a reserved word # # Routines and values common to Plico suite scripts that work with nucleotides # Must be present in the same directory as other Plico scripts that use them kNTcommon = 6 kC5O5PO3B = -71.0 kO5PO3C3B = -107.0 kPO3C3C4B = -161.5 kO3C3C4C5B = 140.0 kC3C4C5O5B = 55.65 kC4C5O5PB = 169.0 kO4C4C3C2B = 15.92 kC4O4C1C2B = -19.9 #-41.7 1bna minimized kC2O4C1NxB = -122.6 #-159.0 1bna minimized kC5C4O4C1B = 122.2 #146.3 1bna minimized kC3C1C2O2B = 120.5 kPuB = 59.0 kPyB = 61.0 kC5O5PO3A = -59.3 kO5PO3C3A = -63.1 kPO3C3C4A = -157.4 kO3C3C4C5A = 75.5 kC3C4C5O5A = 49.55 kC4C5O5PA = 169.2 kO4C4C3C2A = -35.55 kC4O4C1C2A = 3.8 kC2O4C1NxA = -131.0 kC5C4O4C1A = 144.85 kC3C1C2O2A = 116.3 kPuA = 13.5 kPyA = 16.5 gChain1 = "A" gChain2 = "" # Select before calling function force_p_res(cres, iChain) { var pres = cres-1 var aP = get_atom_rcn( cres, iChain, "P") var aO5 = get_atom_rcn( cres, iChain, "O5\'") var aC5 = get_atom_rcn( cres, iChain, "C5\'") var aC4 = get_atom_rcn( cres, iChain, "C4\'") var aOP1 = get_atom_rcn( cres, iChain, "OP1") var aOP2 = get_atom_rcn( cres, iChain, "OP2") var aO3p = get_atom_rcn( pres, iChain, "O3\'") var aC3p = get_atom_rcn( pres, iChain, "C3\'") if (aO3p) { var selsave = {selected} set_distance_atoms(aP3p, aC5, 3.1) select aO5 var dist = distance(aO3p, aO5) var widen = (dist < 2.85) var dir = (widen ? -1 : 1) var first = true while (abs(dist-2.85) > kDtolerance) { rotateSelected @aC4 @aC5 @dir var newdist = distance(aO3p, aO5) if (widen ? (newdist < dist) : (newdist > dist)) { if (first) { dir = -dir rotateSelected @aC4 @aC5 @dir } else { break } } dist=newdist first = false } select aP set_distance_atoms(aO5, aP, 1.73) set_angle_atoms(aC5, aO5, aP, 110.1) #set_dihedral_atoms(aC4, aC5, aO5, aP, 150.3) aOP2.xyz = get_tet_idx(aO3p.atomIndex, aP.atomIndex, aO5.atomIndex, 1.73) aOP1.xyz = get_tet_idx(aO5.atomIndex, aP.atomIndex, aO3p.atomIndex, 1.73) plico_minimize( {(connected(aP) or aP) and not aO3p}) select selsave } } function fix_p_res(cres, iChain, force) { print format("fix_p_res(cres=%d, ichain=%s, force=%s)", cres, iChain, force) var pres = cres-1 var aP = get_atom_rcn( cres, iChain, "P") var aO5 = get_atom_rcn( cres, iChain, "O5\'") var aC5 = get_atom_rcn( cres, iChain, "C5\'") var aC4 = get_atom_rcn( cres, iChain, "C4\'") var aC1 = get_atom_rcn( cres, iChain, "C1\'") var aOP1 = get_atom_rcn( cres, iChain, "OP1") var aOP2 = get_atom_rcn( cres, iChain, "OP2") var aO3p = get_atom_rcn( pres, iChain, "O3\'") var aC3p = get_atom_rcn( pres, iChain, "C3\'") var aC4p = get_atom_rcn( pres, iChain, "C4\'") if (aO3p.size and aC4.size) { var selsave = {selected} # If collision if (force and distance(aC3p, aC5) <= kCtolerance) { # Push away select {(resno <= @{aC5.resno}) and (chain=iChain) and thisModel} set_distance_atoms(aC3p, aC5, kCtolerance) } # Rotate C4'-C5' until P-O3' is 1.59 select aP set_distance_atoms(aO5, aP, 1.59) set_angle_atoms(aC5, aO5, aP, 109) set_dihedral_atoms(aC4, aC5, aO5, aP, 180) select add aO5 var dist = distance(aP, aO3p) if (dist > 1.59) { var dir = 1.0 for (var i = 0; i < 180; i++) { dist = distance(aP, aO3p) if ((dist-1.59) < 0.1) { break } rotateSelected @aC4 @aC5 @dir var newdist = distance(aP, aO3p) if (newDist > dist) { rotateSelected @aC4 @aC5 @{-dir} if (dir > 0) { dir = -dir } else { break } } } #endfor 180 } else { var dir = -1.0 for (var i = 0; i < 180; i++) { dist = distance(aP, aO3p) if ((1.59-dist) < 0.1) { break } rotateSelected @aC4 @aC5 @dir var newdist = distance(aP, aO3p) if (newDist < dist) { rotateSelected @aC4 @aC5 @{-dir} if (dir < 0) { dir = -dir } else { break } } } #endfor 180 } aOP2.xyz = get_tet_idx(aO3p.atomIndex, aP.atomIndex, aO5.atomIndex, 1.73) aOP1.xyz = get_tet_idx(aO5.atomIndex, aP.atomIndex, aO3p.atomIndex, 1.73) if (force) { select {aP or aOP1 or aOP2} plico_minimize( {selected}) } select selsave } } function fix_p_res_range(res5, res3, iChain, force) { for (var i = res5; i <= res3; i++) { fix_p_res(i, iChain, force) } } function fix_all_nt_collisions( iChain) { var selsave = {selected} chset = count_collisions(true) for (var i = 1; i <= chset.size; i++) { c = chset[i] cset = (within(kCtolerance, c) and not c and not connected(chset[i])) rset = [{resno=@{c.resno}}] for (var j = 1; j <= cset.size; j++) { rset += {resno=@{cset[j].resno}} } if ({c and cset and not base}) { select {@{rset} and base} plico_minimize( {selected}) } else if (c.atomname[1][2] == "OP") { fix_p_res(chset[i].resno, iChain, true) } else { plico_minimize(rset) } } measure off select selsave } # The following functions position one nt relative to another: # Common positioning functions: function get_rotors_res(res) { var rotors = array() var sRes = res var mRes = sRes-1 var iChain = {(resno=res) and (atomName="P") and thisModel}.chain var mC4 = get_atom_rcn( mRes, iChain, "C4\'") var mC3 = get_atom_rcn( mRes, iChain, "C3\'") var mO3 = get_atom_rcn( mRes, iChain, "O3\'") var sP = get_atom_rcn( sRes, iChain, "P" ) var sO5 = get_atom_rcn( sRes, iChain, "O5\'") var sC5 = get_atom_rcn( sRes, iChain, "C5\'") var sC4 = get_atom_rcn( sRes, iChain, "C4\'") var sC3 = get_atom_rcn( sRes, iChain, "C3\'") rotors += [mC4.atomIndex, mC3.atomIndex, mO3.atomIndex, sP.atomIndex] rotors += [mC3.atomIndex, mO3.atomIndex, sP.atomIndex, sO5.atomIndex] rotors += [mO3.atomIndex, sP.atomIndex, sO5.atomIndex, sC5.atomIndex] rotors += [sP.atomIndex, sO5.atomIndex, sC5.atomIndex, sC4.atomIndex] rotors += [sO5.atomIndex, sC5.atomIndex, sC4.atomIndex, sC3.atomIndex] return rotors } function get_nt_chi_rotor_res(res, iChain) { var rotors = array() var aO4 = get_atom_rcn( res, iChain, "O4\'") var aC1 = get_atom_rcn( res, iChain, "C1\'") var isR = (aC1 and {purine}) var N1or9 = (isR ? "N9" : "N1") var C6or8 = (isR ? "C8" : "C6") var aN = get_atom_rcn(res, iChain, N1or9) var aC = get_atom_rcn(res, iChain, C6or8) rotors = [aO4.atomIndex, aC1.atomIndex, aN.atomIndex, aC.atomIndex] return rotors } function get_nt_ab_rotor_res(res, iChain) { var rotors = array() var aC5 = get_atom_rcn(res, iChain, "C5\'") var aC4 = get_atom_rcn(res, iChain, "C4\'") var aC3 = get_atom_rcn(res, iChain, "C3\'") var aO3 = get_atom_rcn(res, iChain, "O3\'") rotors = [aO3.atomIndex, aC3.atomIndex, aC4.atomIndex, aC5.atomIndex] return rotors } function gen_nt_rotors(res5, res3, iChain) { var rotors = array() for (var i = res5+1; i <= res3; i++) { rotors += get_rotors_res(i, iChain) } return rotors } # ri=moved rj=fixed function position_nt_by_vs(ri, rj, ares, vs, iChain, jChain) { if (ri > rj) { var as = gen_as(ri, rj, iChain, jChain) select {(resno < ares) and (resno >= ri) and (chain=iChain) and thisModel} } else { var as = gen_as(rj, ri, jChain, iChain) select {(resno > ares) and (resno <= ri) and (chain=iChain) and thisModel} } move_it(as, vs) } # Moved object must be selected, fixed object not # as[6] = fixed[1-3] moved[4-6] chis [7-8] # vs[6] = [distance(as[3-4]), angle(as[2-4]), # dihedral(as[1-4]), angle(as[5-3], dihedral(as[6-3], # dihedral(as[2-5] function move_it(as, vs) { # Distance, angle, dihedral positions atom[4] to a point set_distance_atoms(as[3], as[4], vs[1]) set_angle_atoms(as[2], as[3], as[4], vs[2]) set_dihedral_atoms(as[1], as[2], as[3], as[4], vs[3]) # Angle and dihedral orients atom[4]'s object set_angle_atoms(as[3], as[4], as[5], vs[4]) set_dihedral_atoms(as[3], as[4], as[5], as[6], vs[5]) # Dihedral sets TBD set_dihedral_atoms(as[2], as[3], as[4], as[5], vs[6]) # If chis if (vs.size > 6) { var sel = {selected} select {(resno=@{as[4].resno}) and base} set_dihedral_atoms(as[6], as[5], as[4], as[8], vs[8]) } } # ri=moved rj=fixed function gen_as(ri, rj, iChain, jChain) { var as = array() as[1] = get_atom_rcn(rj, jChain, "C4\'") as[2] = get_atom_rcn(rj, jChain, "C1\'") as[3] = connected(as[2]) and {element="N"} as[5] = get_atom_rcn(ri, iChain, "C1\'") as[6] = get_atom_rcn(ri, iChain, "C4\'") as[4] = connected(as[5]) and {element="N"} as[7] = get_atom_rcn(rj, jChain, ((as[1] and {purine}) ? "C8" : "C6")) as[8] = get_atom_rcn(ri, iChain, ((as[6] and {purine}) ? "C8" : "C6")) return as } # Specific positioning functions: # Pair res5 on res3 moving res5 <= res3 function pair_it_res(res5, res3, ares, iChain, jChain) { var as = gen_as(res5, res3, iChain, jChain) var isA = is_form_a(res5, iChain) var vs = array() vs[1] = 8.83 # distance res5 N9or1 and res3 N9or1 vs[2] = 126.12 # angle res5 N9or1 and res3 N9or1 C1 vs[3] = (isA ? 160.0 : -134.97) # dihedral res5 N9or1 and res3 N9or1 C1 C4 vs[4] = 125.32 # angle res5 C1 N9or1 and res3 N9or1 vs[5] = (isA ? 160.0 : -141.46) # dihedral res5 C4 N9or1 C1 and res3 N9or1 vs[6] = (isA ? -5.0 : -17.87) # dihedral res5 N9or1 C1 and res3 N9or1 C1 vs[7] = (isA ? -20.0 : 38) # dihedral chi res3 vs[8] = (isA ? -20.0 : 38) # dihedral chi res5 if (ares < 0) { select ((resno=res5) and (chain=iChain) and thisModel) } else if (ares > 0) { select ((resno <= ares) and (chain=iChain) and thisModel) } move_it(as, vs) fix_p_res(res5, iChain, true) fix_p_res(res5+1, iChain, true) } # Flatstack res5 on res3 moving just res5 function single_flatstack_res5_on_res3(res5, res3, iChain, jChain) { var as = gen_as(res5, res3, iChain, jChain) var vs = array() vs[1] = 7.00 # distance res5 N9or1 and res3 N9or1 vs[2] = 89.1 # angle res5 N9or1 and res3 N9or1 C1 vs[3] = -49.9 # dihedral res5 N9or1 and res3 N9or1 C1 C4 vs[4] = 83.4 # angle res5 C1 N9or1 and res3 N9or1 vs[5] = 125.7 # dihedral res5 C4 N9or1 C1 and res3 N9or1 vs[6] = 5.8 # dihedral res5 N9or1 C1 and res3 N9or1 C1 select {(resno=res5) and (chain=iChain) and thisModel} move_it(as, vs) #force_p_res(res3, jChain) #move_it(as, vs) #fix_p_res(res3, jChain, true) #force_p_res(res3, jChain) } # Outstack res5 on res3 moving just res5 function single_outstack_res5_on_res3(res5, res3, iChain, jChain) { var as = gen_as(res5, res3, iChain, jChain) var vs = array() vs[1] = 8.23 # distance res5 N9or1 and res3 N9or1 vs[2] = 32.4 # angle res5 N9or1 and res3 N9or1 C1 vs[3] = -26.8 # dihedral res5 N9or1 and res3 N9or1 C1 C4 vs[4] = 99.6 # angle res5 C1 N9or1 and res3 N9or1 vs[5] = 57.4 # dihedral res5 C4 N9or1 C1 and res3 N9or1 vs[6] = 179.1 # dihedral res5 N9or1 C1 and res3 N9or1 C1 select {(resno=res5) and (chain=iChain) and thisModel} move_it(as, vs) force_p_res(res3, jChain) move_it(as, vs) ##fix_p_res(res3, jChain, true) } # Flatstack res5 on res3 moving just res5 function single_flatstack_res5_on_res3(res3, res5, iChain, jChain) { var as = gen_as(res5, res3, iChain, jChain) vs = array() vs[1] = 6.00 # distance res5 N9or1 and res3 N9or1 vs[2] = 90#75.1 # angle res5 N9or1 and res3 N9or1 C1 vs[3] = 90#135.3 # dihedral res5 N9or1 and res3 N9or1 C1 C4 vs[4] = 90#89.9 # angle res5 C1 N9or1 and res3 N9or1 vs[5] = -90#-47.3 # dihedral res5 C4 N9or1 C1 and res3 N9or1 vs[6] = 0#1.7 # dihedral res5 N9or1 C1 and res3 N9or1 C1 select {(resno=res5) and (chain=iChain) and thisModel} move_it(as, vs) force_p_res(res5, jChain) } # Outstack res3 on res5 moving just res5 function single_outstack_res3_on_res5(res5, res3, iChain, jChain) { var as = gen_as(res5, res3, iChain, jChain) var vs = array() vs[1] = 8.9 # distance res5 N9or1 and res3 N9or1 vs[2] = 65.3 # angle res5 N9or1 and res3 N9or1 C1 vs[3] = 55.7 # dihedral res5 N9or1 and res3 N9or1 C1 C4 vs[4] = 61.2 # angle res5 C1 N9or1 and res3 N9or1 vs[5] = -41.2 # dihedral res5 C4 N9or1 C1 and res3 N9or1 vs[6] = -138.4 # dihedral res5 N9or1 C1 and res3 N9or1 C1 select {(resno=res5) and (chain=iChain) and thisModel} move_it(as, vs) force_p_res(res5, jChain) move_it(as, vs) ##fix_p_res(res5, jChain, true) } function make_major_groove_triplex(res5, res3, iChain, jChain) { var as = gen_as(res5, res3, iChain, jChain) var vs = array() vs[1] = 8.11 # distance res5 N9or1 and res3 N9or1 vs[2] = 166.2 # angle res5 N9or1 and res3 N9or1 C1 vs[3] = 0.3 # dihedral res5 N9or1 and res3 N9or1 C1 C4 vs[4] = 162.8 # angle res5 C1 N9or1 and res3 N9or1 vs[5] = 114.6 # dihedral res5 C4 N9or1 C1 and res3 N9or1 vs[6] = 138.1 # dihedral res5 N9or1 C1 and res3 N9or1 C1 # Move the nt into final position select {(resno <= res5) and (chain=iChain) and thisModel} move_it(as, vs) # Rotate ribose to hbond O2' to res5+1 N7 select {(resno = res5) and not base and (chain=iChain) and thisModel} var aC1 = get_atom_rcn( res5, iChain, "C1\'") var aN9 = get_atom_rcn( res5, iChain, "N9") rotate selected @aC1 @aN9 -40.0 # Fix up select {((resno=res5) or (resno=@{res5+1})) and (chain=iChain) and thisModel} plico_minimize( {selected}) fix_p_res(res5+1, iChain, true) } # Pair U res5 on A res3 Hoogsteen N3-N7, N6-O2, O4-O1p moving res5 => res3 function make_hoogsteen_pair_yr(res5, res3, iChain, jChain) { var as = gen_as(res5, res3, iChain, jChain) var vs = array() var cp = as[6].xyz vs[1] = 7.05 # distance res5 N9or1 and res3 N9or1 vs[2] = 150.7 # angle res5 N9or1 and res3 N9or1 C1 vs[3] = -33.1 # dihedral res5 N9or1 and res3 N9or1 C1 C4 vs[4] = 143.0 # angle res5 C1 N9or1 and res3 N9or1 vs[5] = -173.9 # dihedral res5 C4 N9or1 C1 and res3 N9or1 vs[6] = -179.8 # dihedral res5 N9or1 C1 and res3 N9or1 C1 # Move the nt into final position select {(resno <= res5) and (chain=iChain) and thisModel} move_it(as, vs) # Rotate 5 end out of the way select {(resno < res5) and (chain=iChain) and thisModel} var aC4 = get_atom_rcn( res5, iChain, "C4\'") var aC5 = get_atom_rcn( res5, iChain, "C5\'") rotate selected @aC4 @aC5 160.0 # Fix up select {((resno=res5) or (resno=@{res5+1})) and (chain=iChain) and thisModel} plico_minimize( {selected}) fix_p_res(res5+1, iChain, true) fix_p_res(res5, iChain, true) } function level_base(rMove, rFixed, iChain, jChain) { var selsave = {selected} var mC1 = get_atom_rcn(rMove, iChain, "C1\'") var mIsR = {mC1 and purine} var m9or1 = (mIsR ? "N9" : "N1") var m6or8 = (mIsR ? "C8" : "C6") var m4or2 = (mIsR ? "C4" : "C2") var mN = get_atom_rcn(rMove, iChain, m9or1) var mC6or8 = get_atom_rcn(rMove, iChain, m6or8) var mC4or2 = get_atom_rcn(rMove, iChain, m4or2) var fC1 = get_atom_rcn(rFixed, jChain, "C1\'") var fIsR = {fC1 and purine} var f9or1 = (fIsR ? "N9" : "N1") var f6or8 = (fIsR ? "C8" : "C6") var f4or2 = (fIsR ? "C4" : "C2") var fN = get_atom_rcn(rFixed, jChain, f9or1) var fC6or8 = get_atom_rcn(rFixed, jChain, f6or8) var fC4or2 = get_atom_rcn(rFixed, jChain, f4or2) var dist = abs(distance(fc4or2, mc4or2) - distance(fc6or8, mc6or8)) var newdist = dist var dir = 0.1 select {(resno=rMove) and (chain=iChain) and base and thisModel} while(newdist > 0.01) { if (newdist > dist) { if (dir == 0.1) { dir = -0.1 } else { rotateSelected @mC1 @mN @{-dir} break } } dist = newdist rotateSelected @mC1 @mN @{dir} newdist = abs(distance(fc4or2, mc4or2) - distance(fc6or8, mc6or8)) } select selsave } # Stack res rMove on res rFixed function base_stack_res( rMove, rFixed, iChain, jChain, sep , ang, single) { var isA = is_form_a(rMove, iChain) var is3on5 = (rMove > rFixed) var j = rFixed var i = rMove var as = array() var vs = array() as = gen_as(rMove, rFixed, iChain, jChain) if (single) { select {(resno = i) and (chain=iChain) and thisModel} } else { if (is3on5) { select {(resno >= i) and (chain=iChain) and thisModel} } else { select {(resno <= i) and (chain=iChain) and thisModel} } } # Set distance of fres N1or9 from mres N1or9 (1tna=4.2) vs[1] = sep # Set angle fres C1' N1or9 and mres N1or9 (A=6tna B=1ana) vs[2] = (isA ? (is3on5 ? 92.8 : 113.9) : (is3on5 ? 83.3 : 115.23))#78.3 : 110.23 # Set dihedral fres C4' C1' N1or9 and mres N1or9 (A=6tna B=1ana) vs[3] = (isA ? (is3on5 ? 110.0 : -71.2) : (is3on5 ? 165.92 : -28.31)) # Set angle fres N1or9 and mres N1or9 C1' (A=6tna B=1ana) vs[4] = (isA ? (is3on5 ? 113.9 : 92.8) : (is3on5 ? 115.23 : 83.3)) # Set dihedral fres N1or9 and mres N1or9 C1' C4' (A=6tna B=1ana) vs[5] = (isA ? (is3on5 ? -71.2 : 110.0) : (is3on5 ? -28.31 : 165.92)) # Set dihedral of fres C5 N1or9 and mres N1or9 C5 (1tna=20) vs[6] = ang move_it(as, vs) #select {(resno=rMove) or (resno=rFixed)} #minimize {selected} #force_p_res(i, iChain) ##fix_p_res(i+1, iChain, true) } # Rotate rotor set to move target atom to its proper place # ares is the 5ward res limit exclusive of the mobile function move_atom_nt(targetIdx, targetPt, ares, rotors, force) { var set3 var pt = targetPt var targetNo = {atomIndex=targetIdx}.atomno var targetRes = {atomIndex=targetIdx}.resno var iChain = {atomIndex=targetIdx}.chain gOK = false var dist = distance(pt, {atomIndex=targetIdx}.xyz) # If target is a C1' atom, collect its base var tBase = ({}) var i1 = 0 var i2 = 0 var i3 = 0 var i4 = 0 if ({atomIndex=targetIdx}.atomName == "C1\'") { tBase = {(resno = targetRes) and base} } # For idx number of passes for (var pass1 = 0; pass1 < 20; pass1++) { var blocked = ({}) for (var pass2 = 0; pass2 < (rotors.size/4); pass2++) { var v1 = {atomIndex=targetIdx}.xyz - pt # Find the most orthgonal unused rotor var imax = 0 var smax = 0.5 for (var ri = 1; ri < rotors.size; ri += 4) { i2 = rotors[ri+1] i3 = rotors[ri+2] i4 = rotors[ri+3] if ((i2 != targetIdx) and (i3 != targetIdx) and (i4 != targetIdx)) { if ({blocked and {atomIndex=i2}}.count == 0) { v2 = {atomIndex=i3}.xyz - {atomIndex=i2}.xyz var s = sin(abs(angle(v1, {0 0 0}, v2))) if (s > smax) { smax = s imax = ri } } } } # If no more rotors, break to next full try if (imax == 0) { break } i1 = rotors[imax+0] i2 = rotors[imax+1] i3 = rotors[imax+2] i4 = rotors[imax+3] # Get dihedral of rotor with target point var dt = (angle({atomIndex=targetIdx}, {atomIndex=i2}, {atomIndex=i3}, pt)/(rotors.size/20)) # Select and rotate if (ares > targetRes) { select_3ward_atom({atomIndex=i3}, ares, iChain) res3 = {atomIndex=i4}.resno } else { select_5ward_atom({atomIndex=i3}, ares, iChain) res3 = {atomIndex=i1}.resno } select remove tbase #*************************************************** rotateSelected {atomIndex=i3} {atomIndex=i2} @{-dt} # If collisions set3 = (within(kCtolerance, {selected}) and not {selected} and not connected({selected})) if ((force == false) and (set3)) { # Binary undo until fixed while ((abs(dt) > kDtolerance) and ((set5 and within(kCtolerance, set3)))) { dt /= 2.0 rotateSelected {atomIndex=i3} {atomIndex=i2} @{dt} } while ((abs(dt) > kDtolerance) and ((set5 and within(kCtolerance, set3)))) { dt /= 2.0 rotateSelected {atomIndex=i3} {atomIndex=i2} @{-dt} } rotateSelected {atomIndex=i3} {atomIndex=i2} @{dt} } # If close enough, stop dist = distance(pt, {atomIndex=targetIdx}) if (dist < kDtolerance) { gOK = true gTargetPt = pt break } # Block rotor blocked |= {atomIndex=i2} } # endfor num rotors passes if (gOK) { break } } # endfor 20 passes return set3 } # Counter rotate rotor set to move target atom to its proper place function move_atom_by_cr_nt(targetIdx, targetPt, ares, iRotors) { var pt = targetPt var rotors = iRotors var targetNo = {atomIndex=targetIdx}.atomno var targetRes = {atomIndex=targetIdx}.resno var iChain = {atomIndex=targetIdx}.chain gOK = false var dist = distance(pt, {atomIndex=targetIdx}.xyz) # If target is a C1' atom, collect its base var tBase = ({}) var i1 = 0 var i2 = 0 var i3 = 0 var i4 = 0 if ({atomIndex=targetIdx}.atomName == "C1\'") { tBase = {(resno = targetRes) and base} } # For all C4'-C5' axes for (var ri = 1; ri < rotors.size; ri += 4) { if ({atomIndex=@{rotors[ri]}}.atomName == "C4\'") { # While distance lessens var dist = distance(pt, {atomIndex=targetIdx}) var first = true var dt = 5.0 while (dist > kDtolerance) { # Counter rotate C4'-C5' and O5'-P axes var i1 = rotors[ri+8] var i2 = rotors[ri+9] var i3 = rotors[ri+10] var i4 = rotors[ri+11] var x2 = rotors[ri+17] var x3 = rotors[ri+18] var x4 = rotors[ri+19] var res3 = 0 # Select and rotate if (ares > targetRes) { select_3ward_atom({atomIndex=i3}, ares, iChain) res3 = {atomIndex=i4}.resno } else { select_5ward_atom({atomIndex=i3}, ares, iChain) res3 = {atomIndex=i1}.resno } select remove tbase rotateSelected {atomIndex=i3} {atomIndex=i2} @{dt} # Select and counter rotate if (ares > targetRes) { select_3ward_atom({atomIndex=x3}, ares, iChain) } else { select_5ward_atom({atomIndex=x3}, ares, iChain) } select remove tbase rotateSelected {atomIndex=x3} {atomIndex=x2} @{-dt} # If first and worse, reverse var newdist = distance(pt, {atomIndex=targetIdx}) if (newdist > dist) { if (first) { dt = -dt } else { break } } first = false dist = newdist /*# If collisions var res5 = res3-1 var set3 = {(resno=res3) and (atomName!="P") and (atomName!="OP1") and thisModel} var set5 = {(resno=res5) and (atomName!="P") and (atomName!="OP1") and thisModel} if ((set5 and within(kCtolerance, set3))) { # Binary undo until fixed while ((abs(dt) > kDtolerance) and ((set5 and within(kCtolerance, set3)))) { dt /= 2.0 rotateSelected {atomIndex=i3} {atomIndex=i2} @{dt} } while ((abs(dt) > kDtolerance) and ((set5 and within(kCtolerance, set3)))) { dt /= 2.0 rotateSelected {atomIndex=i3} {atomIndex=i2} @{-dt} } rotateSelected {atomIndex=i3} {atomIndex=i2} @{dt} }*/ } # endwhile } } # endfor rotors } # If ares < 0 then adjust iRes only function to_ab_nt_res(res, ares, iChain, toA) { var selsave = {selected} var aO3 = get_atom_rcn( res, iChain, "O3\'") var aC3 = get_atom_rcn( res, iChain, "C3\'") var aC4 = get_atom_rcn( res, iChain, "C4\'") var aC5 = get_atom_rcn( res, iChain, "C5\'") var aC1 = get_atom_rcn( res, iChain, "C1\'") var aC2 = get_atom_rcn( res, iChain, "C2\'") var aO2 = get_atom_rcn( res, iChain, "O2\'") var aO4 = get_atom_rcn( res, iChain, "O4\'") if (ares < 0) { select ((resno=res) and (chain=iChain) and thisModel and not aO3 and not aC3 and not aC4) } else { select ((resno >= ares) and (resno <= res) and (chain=iChain) and thisModel and not aO3 and not aC3 and not aC4) } set_dihedral_atoms(aO3, aC3, aC4, aC5, (toA ? kO3C3C4C5A : kO3C3C4C5B)) # Set chi var aNx = -1 var aCx = -1 var ang = 0.0 select {(resno=res) and (chain=iChain) and thisModel and base} if (aC1 and {purine}) { aNx = get_atom_rcn( res, iChain, "N9") aCx = get_atom_rcn( res, iChain, "C8") ang = (toA ? kPuA : kPuB) } else { aNx = get_atom_rcn(res, iChain, "N1") aCx = get_atom_rcn(res, iChain, "C6") ang = (toA ? kPyA : kPyB) } set_dihedral_atoms(aO4, aC1, aNx, aCx, ang) # Set pucker 3' endo or 2' endo var pSet = {aC1 or aC2 or aO2} select pSet or {(resno=res) and (chain=iChain) and thisModel and base} set_dihedral_atoms(aC5, aC4, aO4, aC1, (toA ? kC5C4O4C1A : kC5C4O4C1B)) set_dihedral_atoms(aC4, aO4, aC1, aC2, (toA ? kC4O4C1C2A : kC4O4C1C2B)) set_dihedral_atoms(aC2, aO4, aC1, aNx, (toA ? kC2O4C1NxA : kC2O4C1NxB)) if (aO2) { select aO2 or aC2 ang = (toA ? kC3C1C2O2A : kC3C1C2O2B) set_dihedral_atoms(aC3, aC1, aC2, aO2, (toA ? kC3C1C2O2A : kC3C1C2O2B)) } set_distance_atoms(aC3, aC2, 1.52) set_distance_atoms(aC1, aC2, 1.52) select selsave } function adjust_nts(res5, res3, iChain, toab, a, s) { # Collect any pairing var w = array() for (var i = res5; i <= res3; i++) { w = w + [who_pairs(i, iChain)] } # Twist and turn for (var i = res3; i >= res5; i--) { var j = i-res5+1 if (toab) { to_ab_nt_res(i, -1, iChain, (toab == "A")) if ((w[j])[1] >= 0) { to_ab_nt_res((w[j])[1], -1, (w[j])[2], (toab == "A")) } } } for (var i = res5; i < res3; i++) { base_stack_res(i, i+1, iChain, iChain, s, a, false) } # Restore pairings for (var i = res3; i >= res5; i--) { var j = i-res5+1 if ((w[j])[1] >= 0) { pair_it_res((w[j])[1], i, -1, (w[j])[2], iChain) } } # Clean up for (var i = res3; i >= res5; i--) { var j = i-res5+1 fix_p_res(i, iChain, true) if ((w[j])[1] >= 0) { fix_p_res((w[j])[1], (w[j])[2], true) } } } ######################################################### ### STAND ALONE GENERAL PURPOSE FUNCTIONS ### ######################################################### function is_form_a( iResno, iChain) { var aO4 = get_atom_rcn( iResno, iChain, "O4\'") var aC1 = get_atom_rcn( iResno, iChain, "C1\'") var aC2 = get_atom_rcn( iResno, iChain, "C2\'") var aC3 = get_atom_rcn( iResno, iChain, "C3\'") return (angle(aO4, aC1, aC2, aC3) < 0.0) } function is_r_res( iResno, iChain) { return ({(resno=iResno) and (chain=iChain) and thisModel and purine}) } function repair_p_res(res, iChain) { var aP = get_atom_rcn( res, iChain, "P") plico_minimize( {connected(aP) or aP}) } function who_pairs(iRes, iChain) { var aC4or6 = get_atom_rcn( iRes, iChain, "C4") var aN1or3 = get_atom_rcn( iRes, iChain, "N1") if ({aN1or3 and purine}.size = 0) { aC4or6 = get_atom_rcn( iRes, iChain, "C6") aN1or3 = get_atom_rcn( iRes, iChain, "N3") } if (aN1or3) { var near = within(3.2, aN1or3) and {resno!=iRes} and {element="N"} for (var i = 1; i <= near.size; i++) { var dist = distance(near[i], aN1or3) var ang = abs(angle(near[i], aN1or3, aC4or6)) if (ang > 150) { return [near[i].resno, near[i].chain, dist, ang] } } } return [-1, aC4or6.chain, -1, -1] } function who_almost_pairs(iRes, iChain) { var aC2 = get_atom_rcn( iRes, iChain, "C2") var aC4or6 = get_atom_rcn( iRes, iChain, "C4") var aN1or3 = get_atom_rcn( iRes, iChain, "N1") var pname = "C6" if ({aN1or3 and purine}.size = 0) { aC4or6 = get_atom_rcn( iRes, iChain, "C6") aN1or3 = get_atom_rcn( iRes, iChain, "N3") pname = "C4" } if (aN1or3) { var near = within(3.4, aN1or3) and {resno!=iRes} and {element="N"} for (var i = 1; i <= near.size; i++) { var aC6or4 = get_atom_rcn(near[i].resno, near[i].chain, pname) var aC2p = get_atom_rcn(near[i].resno, near[i].chain, "C2") var dist = distance(near[i], aN1or3) var puang = abs(angle(near[i], aN1or3, aC4or6)) var pyang = abs(angle(aC6or4, near[i], aN1or3)) var dihedral = abs(angle(aC2p, near[i], aN1or3, aC2)) if ((puang > 110) and (pyang > 110) and (dihedral < 40)) { return [near[i].resno, near[i].chain, dist, puang] } } } return [-1, aC4or6.chain, -1, -1] } function who_stacks(iRes, iChain) { var ret = array() var aNear = ((within(4.0, {(resno=iRes) and base}) ) and {base} and {not resno=iRes}) var done = array() for (var i = 1; i <= aNear.size; i++) { var jRes = aNear[i].resno if (not done.find(jRes)) { var jChain = aNear[i].chain var as = gen_as(iRes, jRes, iChain, jChain) var d = distance({(resno=iRes) and base}, {(resno=jRes) and base}) var a1 = angle(as[2], as[3], as[4]) var a2 = angle(as[5], as[4], as[3]) var dh = angle(as[5], as[4], as[3], as[2]) var bset = ((connected(as[3]) and not as[2]) or (connected(as[4]) and not as[5])) var a3 = angle(bset[1], bset[2], bset[3]) var a4 = angle(bset[2], bset[3], bset[4]) var isStacked = true # Bases are parallel as sin(a1) = sin(a2) and sin(a3) = sin(a4) if (abs(sin(a1)-sin(a2)) > 20) { isStacked = false } if (abs(sin(a3)-sin(a4)) > 20) { isStacked = false } # Bases are stacked as d*sin(a1) < 6.0 and d3 = 0.0 if (d*sin(a1) > 6.2) { isStacked = false } if (abs(dh) > 30) { #isStacked = false } if (isStacked) { ret += aNear[i].resno } done += jRes } } return ret } function match_nt(mask, nt) { var ret = false switch (mask) { case "A": case "U": case "C": case "G": ret = (mask = nt) break case "N": ret = true break case "M": ret = ((nt=="A") or (nt=="C")) break case "Y": ret = ((nt=="U") or (nt=="C")) break case "R": ret = ((nt=="A") or (nt=="G")) break } return ret } # Calls function match_nt above function select_seqs(seq, r5, r3, iChain, f, m) { select none for (var i = r5; i < r3; i++) { var j = 0 for (; j < seq.size; j++) { if ((gNTres[i+j])[2] >= 0) { break } if ((i+j) >= r3) { break } if (not match_nt(seq[j+1], gSeq[i+j])) { # CALL break } } if (j == seq.size) { print format("%s at %d (%s-%s-%s)%s", seq, i, gSeq[i-1], gSeq[i][i+j-1], gSeq[i+j], aster) var rset = {(resno=i) and (chain=iChain) and thisModel} rset.selected = true } } } function find_tetras(seq, r5, r3, based) { select none for (var i = r5; i < r3; i++) { var j = 0 for (; j < seq.size; j++) { if ((i+j) >= r3) { break } if (not match_nt(seq[j+1], gSeq[i+j])) { # CALL break } } if (j == seq.size) { if (based) { var ends = gSeq[i-1] + gSeq[i+j] var bads = ["AA","GG","AG","GA"] if (bads.count(ends) > 0) { continue } } print format("%s at %d (%s-%s-%s)%s", seq, i, gSeq[i-1], gSeq[i][i+j-1], gSeq[i+j], aster) } } } # Calls is_form_a function select_b_form_nts(iChain) { select none for (var i = get_resno_min(iChain); i <= get_resno_max(iChain); i++) { if (not is_form_a(i, iChain)) { # <== external call print format("Res %d is form B", i) var rset = {(resno=i) and (chain=iChain) and thisModel} rset.selected = true } } } function select_3ward_atom(ar3, ares, iChain) { var i = ar3.resno var aP = get_atom_rcn( i, iChain, "P") switch(ar3.atomName) { case "O3\'" : select {(resno>i) and (resno<ares) and (chain=iChain) and thisModel} break case "P" : select {(resno>=i) and (resno<ares) and (chain=iChain) and thisModel} break case "O5\'" : case "C5\'" : case "C4\'" : select {(resno>=i) and (resno<ares) and (chain=iChain) and thisModel and not (connected(aP) or aP)} break case "C3\'" : var aO3 = get_atom_rcn( i, iChain, "O3\'") select {((resno>i) and (resno<ares) and (chain=iChain) and thisModel) or aO3} break } } function select_5ward_atom(ar5, ares, iChain) { var i = ar5.resno var aP = get_atom_rcn( i, iChain, "P") switch(ar5.atomName) { case "O3\'" : select {(resno<=i) and (resno>ares) and (chain=iChain) and thisModel} break case "P" : case "O5\'" : case "C5\'" : select {((resno<i) and (resno>ares) and (chain=iChain) and thisModel) or (connected(aP) or aP)} break case "C4\'" : var aC5 = get_atom_rcn( i, iChain, "C5\'") select {((resno<i) and (resno>ares) and (chain=iChain) and thisModel) or (connected(aP) or aP or aC5)} break } } function plot_ab_chi( iChain) { select none for (var i = get_resno_min(iChain); i <= get_resno_max(iChain); i++) { var aO4 = get_atom_rcn(i, iChain, "O4\'") var aC1 = get_atom_rcn(i, iChain, "C1\'") var isR = {aC1 and purine} var a1or9 = (isR ? "N9" : "N1") var a6or8 = (isR ? "C8" : "C6") var aN = get_atom_rcn(i, iChain, a1or9) var aC = get_atom_rcn(i, iChain, a6or8) var aO3 = get_atom_rcn(i, iChain, "O3\'") var aC3 = get_atom_rcn(i, iChain, "C3\'") var aC4 = get_atom_rcn(i, iChain, "C4\'") var aC5 = get_atom_rcn(i, iChain, "C5\'") var chi = angle(aO4, aC1, aN, aC) aN.vx = chi var aorb = angle(aO3, aC3, aC4, aC5) aN.vy = aorb select ADD aN } plot properties vx vy resno set echo top left echo "vx = base chi angle vy = a ==> b form" } function move_p_to_close_o3( aP, aO3, ares, force) { var cp = aP.xyz var aC3 = {connected(aO3) and (atomname="C3\'")} select aP set_distance_atoms(aO3, aP, 1.74) set_angle_atoms(aC3, aO3, aP, 109.0) var pt = aP.xyz aP.xyz = cp var rotors = gen_nt_rotors(aP.resno, ares, aP.chain) move_atom_nt(aP.atomIndex, pt, aP.resno-1, rotors, force) ##fix_p_res(aP.resno, aP.chain, true) } function move_o3_to_close_p( aO3, aP, ares, force) { var cp = aO3.xyz var aO5 = {connected(aP) and (atomname="O5\'")} select aO3 set_distance_atoms(aP, aO3, 1.74) set_angle_atoms(aO5, aP, aO3, 109.0) var pt = aO3.xyz aO3.xyz = cp var rotors = gen_nt_rotors(ares, aO3.resno, aO3.chain) move_atom_nt(aO3.atomIndex, pt, aO3.resno+1, rotors, force) ##fix_p_res(aP.resno, aP.chain, true) } # Select mobile before calling function pivot_to_close_atoms( aMov, aStat, aPivot, dist) { var caxis = cross(aStat.xyz, aMov.xyz) - aPivot.xyz var dir = 1 var d = distance(aMov, aStat) if (d > dist) { while (d > dist) { rotateSelected @aPivot @caxis @dir var nd = distance(aMov, aStat) if (nd > d) { rotateSelected @aPivot @caxis @{-dir} if (dir == 1) { rotateSelected @aPivot @caxis @{-dir} dir = -1 continue } else { break } } d = nd } } else { while (d < dist) { rotateSelected @aPivot @caxis @dir var nd = distance(aMov, aStat) if (nd < d) { rotateSelected @aPivot @caxis @{-dir} if (dir == 1) { rotateSelected @aPivot @caxis @{-dir} dir = -1 continue } else { break } } d = nd } } } function print_adjacent_vs( iChain) { var tNN = 0 var taA = 0 var tbA = 0 var taD = 0 var tbD = 0 var tabD = 0 var tc = 0.0 var rmin = get_resno_min(iChain) var rmax = get_resno_max(iChain) for (var i = rmin; i < rmax; i++) { var aC4 = get_atom_rcn(i, iChain, "C4\'") var aC1 = get_atom_rcn(i, iChain, "C1\'") var isR = {aC1 and purine} var a1or9 = (isR ? "N9" : "N1") var aN = get_atom_rcn(i, iChain, a1or9) var aC4p = get_atom_rcn(i+1, iChain, "C4\'") var aC1p = get_atom_rcn(i+1, iChain, "C1\'") isR = {aC1p and purine} a1or9 = (isR ? "N9" : "N1") var aNp = get_atom_rcn(i+1, iChain, a1or9) if (aC4 and aC4p) { var NN = distance(aN, aNp) tNN += NN var aA = angle(aC1, aN, aNp) taA += aA var bA = angle(aC1p, aNp, aN) tbA += bA var aD = angle(aC4, aC1, aN, aNp) if ((aD < 0) and (taD > 0)) { aD += 360 } taD += aD var bD = angle(aC4p, aC1p, aNp, aN) if ((bD < 0) and (tbD > 0)) { bD += 360 } tbD += bD var abD = angle(aC1, aN, aNp, aC1p) tabD += abD tc++ print format("%6.2f %6.2f %6.2f %6.2f %6.2f %6.2f %d%s %s", NN, aA, aD, bA, bD, abD, tc, aC1.group, aC1p.group) } } print format("v1=%6.2f v2=%6.2f v3=%6.2f v4=%6.2f v5=%6.2f v6=%6.2f", tNN/tc, taA/tc, taD/tc, tbA/tc, tbD/tc, tabD/tc) } function measure_adjacent_vs(r5, iChain) { var aC4 = get_atom_rcn(r5, iChain, "C4\'") var aC1 = get_atom_rcn(r5, iChain, "C1\'") var isR = {aC1 and purine} var aN1or9 = get_atom_rcn(r5, iChain, (isR ? "N9" : "N1")) var aC8or6 = get_atom_rcn(r5, iChain, (isR ? "C8" : "C6")) var aC4p = get_atom_rcn(r5+1, iChain, "C4\'") var aC1p = get_atom_rcn(r5+1, iChain, "C1\'") isR = {aC1p and purine} var aN1or9p = get_atom_rcn(r5+1, iChain, (isR ? "N9" : "N1")) var aC8or6p = get_atom_rcn(r5+1, iChain, (isR ? "C8" : "C6")) measure @aN1or9 @aN1or9p measure @aC1 @aN1or9 @aN1or9p measure @aC4 @aC1 @aN1or9 @aN1or9p measure @aC1p @aN1or9p @aN1or9 measure @aC4p @aC1p @aN1or9p @aN1or9 measure @aC1p @aN1or9p @aN1or9 @aC1 measure @aC4 @aC1 @aN1or9 @aC8or6 measure @aC4p @aC1p @aN1or9p @aC8or6p } function print_pair_vs( iChain) { var tNN = 0.0 var taA = 0.0 var tbA = 0.0 var taD = 0.0 var tbD = 0.0 var tabD = 0.0 var tc = 0.0 var taChi = 0.0 var tbChi = 0.0 var rmin = get_resno_min(iChain) var rmax = get_resno_max(iChain) for (var i = rmin; i < rmax; i++) { var aC4 = get_atom_rcn(i, iChain, "C4\'") if (aC4) { var w = who_pairs(i, iChain) # CALL var aC1 = get_atom_rcn(i, iChain, "C1\'") var isR = {aC1 and purine} var a1or9 = (isR ? "N9" : "N1") var aN = get_atom_rcn(i, iChain, a1or9) var a6or8 = (isR ? "C8" : "C6") var aC = get_atom_rcn(i, iChain, a6or8) var aC4p = get_atom_rcn(w[1], w[2], "C4\'") var aC1p = get_atom_rcn(w[1], w[2], "C1\'") a1or9 = (isR ? "N1" : "N9") # rev var aNp = get_atom_rcn(w[1], w[2], a1or9) a6or8 = (isR ? "C6" : "C8") # rev var aCp = get_atom_rcn(w[1], w[2], a6or8) var NN = distance(aN, aNp) tNN += NN var aA = angle(aC1, aN, aNp) taA += aA var bA = angle(aC1p, aNp, aN) tbA += bA var aD = angle(aC4, aC1, aN, aNp) if ((aD < 0) and (taD > 0)) { aD += 360 } taD += aD var bD = angle(aC4p, aC1p, aNp, aN) if ((bD < 0) and (tbD > 0)) { bD += 360 } tbD += bD var abD = angle(aC1, aN, aNp, aC1p) tabD += abD var aChi = angle(aC4, aC1, aN, aC) taChi += aChi var bChi = angle(aC4p, aC1p, aNp, aCp) tbChi += bChi tc++ print format( "%6.2f %6.2f %6.2f %6.2f %6.2f %6.2f %6.2f %6.2f %d%s %d%s", NN, aA, aD, bA, bD, abD, aChi, bChi, tc, aC1.group, w[1], aC1p.group) } } print format( "v1=%6.2f v2=%6.2f v3=%6.2f v4=%6.2f v5=%6.2f v6=%6.2f v7=%6.2f v8=%6.2f", tNN/tc, taA/tc, taD/tc, tbA/tc, tbD/tc, tabD/tc, taChi/tc, tbChi/tc) } function measure_pair_vs(i, j, iChain, jChain) { var aC4 = get_atom_rcn(i, iChain, "C4\'") var aC4p = get_atom_rcn(j, jChain, "C4\'") if (aC4.size and aC4p.size) { var aC1 = get_atom_rcn(i, iChain, "C1\'") var isR = {aC1 and purine} var a1or9 = (isR ? "N9" : "N1") var aN = get_atom_rcn(i, iChain, a1or9) var a6or8 = (isR ? "C8" : "C6") var aC = get_atom_rcn(i, iChain, a6or8) var aC1p = get_atom_rcn(j, jChain, "C1\'") isR = {aC1p and purine} a1or9 = (isR ? "N9" : "N1") var aNp = get_atom_rcn(j, jChain, a1or9) a6or8 = (isR ? "C8" : "C6") var aCp = get_atom_rcn(j, jChain, a6or8) measure @aN @aNp measure @aC1p @aNp @aN measure @aC4p @aC1p @aNp @aN measure @aC1 @aN @aNp measure @aC4 @aC1 @aN @aNp measure @aC1p @aNp @aN @aC1 measure @aC4p @aC1p @aNp @aCp measure @aC4 @aC1 @aN @aC } else { print "No pair found" } } function minimize_for_collision( r, iChain) { fix_p_res( r, iChain, true) # External var cset = (within(kCtolerance, {resno=r}) and not {resno=r} and not connected({resno=r}) and {(chain=iChain) and thisModel}) if (cset) { for (var i = 0; i < cset.size; i++) { plico_minimize( {(resno=r) or (resno=@{cset[i].resno})}) } } # Internal cset = (within(kCtolerance, {(resno=r) and (atomName="OP?")}) and not {(atomName="OP?") or (atomName="P")} and {(chain=iChain) and thisModel}) if (cset) { for (var i = 0; i < cset.size; i++) { plico_minimize( {(resno=r) or (resno=@{cset[i].resno})}) } } } function eval_pairing( seq, r5, r3, len) { var val = 0 for (var i = 0; i < len; i++) { var c5 = seq[r5+i] var c3 = seq[r3-i] if ((c5 == "A") and (c3 == "U")) { val += 2 } else if ((c5 == "U") and (c3 == "A")) { val += 2 } else if ((c5 == "G") and (c3 == "C")) { val += 3 } else if ((c5 == "C") and (c3 == "G")) { val += 3 } else if ((c5 == "G") and (c3 == "U")) { val += 2 } else if ((c5 == "U") and (c3 == "G")) { val += 1 } else if ((c5 == "A") and (c3 == "A")) { val -= 3 } else if ((c5 == "G") and (c3 == "G")) { val -= 3 } } return val } function update_atomnos(iChain) { print "Update atomnos..." var b = {(chain=iChain) and thisModel}.atomno.min for (var r = get_resno_min(iChain); r <= get_resno_max(iChain); r++) { var rset = {(resno=r) and (chain=iChain) and thisModel} for (var n = rset.atomno.min; n <= rset.atomno.max; n++) { var a = {(resno=r) and (chain=iChain) and thisModel and (atomno=n)} a.atomno = -b b++ } } for (var i = -b; i < 0; i++) { var a = {(chain=iChain) and thisModel and (atomno=i)} a.atomno *= -1 } print "Updated" } function replane_bases(iChain) { for (var i = get_resno_min(iChain); i <= get_resno_max(iChain); i++) { plico_minimize( {resno=i and base}) } } function measure_p_dihedrals(i, iChain) { var j = i-1 var as = array() as += get_atom_rcn( j, iChain, "C4\'") as += get_atom_rcn( j, iChain, "C3\'") as += get_atom_rcn( j, iChain, "O3\'") as += get_atom_rcn( i, iChain, "P") as += get_atom_rcn( i, iChain, "O5\'") as += get_atom_rcn( i, iChain, "C5\'") as += get_atom_rcn( i, iChain, "C4\'") as += get_atom_rcn( i, iChain, "C3\'") for (var k = 1; k <= (as.size-3); k++) { measure @{as[k+0]} @{as[k+1]} @{as[k+2]} @{as[k+3]} } } function pair_stem( r5, r3, ar5, iChain) { # Pair entire stem var c = r3 - r5 + 1 for (var k = (c\2)-1 ; k >= 0; k--) { pair_it_res(r5+k, r3-k, ar5, iChain, iChain) # CALL } } # From 2LU0 function make_uncg_loop(res5, ares5, iChain) { var va = array() va[1] = [4.46, 100.5, -83.4, 114.4, 99.8, 39.2, -22.2, -11.8] va[2] = [7.89, 93.6, 50.7, 29.7, 75.3, 163.6, 14.2 -22.2] va[3] = [7.57, 90.9, -11.9, 59.5, 75.6, 74.1, 33.5, 14.2] va[4] = [6.09, 124.9, -5.8, 46.4, -72.6, -27.1, -138.3, 33.5] va[5] = [5.1, 64.0, -102.5, 98.2, 87.0, 58.6, -9.2, -138.3] for (var i = 1; i <= 5; i++) { var as = gen_as(res5+i-2, res5+i-1, iChain, iChain) var vs = array() vs[1] = (va[i])[1] # distance res5 N9or1 and res3 N9or1 vs[2] = (va[i])[2] # angle res5 N9or1 and res3 N9or1 C1 vs[3] = (va[i])[3] # dihedral res5 N9or1 and res3 N9or1 C1 C4 vs[4] = (va[i])[4] # angle res5 C1 N9or1 and res3 N9or1 vs[5] = (va[i])[5] # dihedral res5 C4 N9or1 C1 and res3 N9or1 vs[6] = (va[i])[6] # dihedral res5 N9or1 C1 and res3 N9or1 C1 vs[7] = (va[i])[7] # dihedral chi res3 vs[8] = (va[i])[8] # dihedral chi res5 select {(resno < @{res5+i-1}) and (resno > ares5) and (chain=iChain) and thisModel} move_it(as, vs) fix_p_res(res5+i-1, iChain, true) } } # From 2LU0 function make_gnra_loop(res5, ares5, iChain) { var va = array() va[1] = [4.37, 93.9, -84.9, 117.9, 99.1, 42.0, -19.4, 3.2] va[2] = [7.94, 77.5, 47.5, 58.9, 87.1, 179.5, 4.5 -19.4] va[3] = [4.9, 102.9, -98.6, 79.2, 112.4, 61.2, -29.6, 4.5] va[4] = [4.97, 124.5, -70.0, 99.8, 93.2, 34.0, 2.5, -29.6] va[5] = [4.31, 76.0, -98.4, 106.6, 97.2, 45.6, -15.5, 2.5] for (var i = 1; i <= 5; i++) { var as = gen_as(res5+i-2, res5+i-1, iChain, iChain) var vs = array() vs[1] = (va[i])[1] # distance res5 N9or1 and res3 N9or1 vs[2] = (va[i])[2] # angle res5 N9or1 and res3 N9or1 C1 vs[3] = (va[i])[3] # dihedral res5 N9or1 and res3 N9or1 C1 C4 vs[4] = (va[i])[4] # angle res5 C1 N9or1 and res3 N9or1 vs[5] = (va[i])[5] # dihedral res5 C4 N9or1 C1 and res3 N9or1 vs[6] = (va[i])[6] # dihedral res5 N9or1 C1 and res3 N9or1 C1 vs[7] = (va[i])[7] # dihedral chi res3 vs[8] = (va[i])[8] # dihedral chi res5 select {(resno < @{res5+i-1}) and (resno > ares5) and (chain=iChain) and thisModel} move_it(as, vs) fix_p_res(res5+i-1, iChain, true) } } # end of plicoNTcommon.spt