Recycling Corner/DNA Generator
POLYMERAZE takes a string message encoding a nucleotide (nt) sequence and generates a corresponding double helix one nt at a time from the 5' terminus to the 3' terminus rotating the emerging helix as it goes.
The resulting polynucleotide defaults to an open B-form. If the script "to_ab_nt" described here is available, it prompts to converts to a regular B-form if DNA or to a regular A-form if RNA or mixed.
The message is a string entered by the user at a prompt. It may be typed in or pasted in and be of any length. If prepended with '3' then the string is considered as 3' to 5'. If prepended with 'R' then RNA is generated instead of DNA. If prepended with 'S' then a single strand helix is produced. If prepended with 'M' then a mixed helix is produced where the first strand is DNA and the second RNA. Multiple prepends are allowed (though 'M' would be inconsistent with 'R' or 'S').
If the 3d character is ':' then the two chains are labeled by the two preceding characters instead of the default 'A' and 'B'. Likewise if the 2d character is ':' then the presumably single chain is labeled by the preceding single character.
A polynucleotide may be added onto by subsequent runs if the previous helices are not moved away. Note that a single chain helix could then be added to a double chain or RNA to DNA or whatever. Have fun...
The IUPAC/IUBMB 1 letter code is used: A=Adenine C=Cytosine G=Guanine T=Thymine U=Uracil
The top level function plicoGenNt prompts the user for input.
The top level function plicoGenHelix accepts a string as a parameter.
Polymeraze is a member of the Plico suite of protein folding tools described here. It may be installed and accessed as a macro with the file:
Title=PLICO Generate Polynucleotide Script=script <path to your script folder>/polymeraze.spt;plico_gen_nt
saved as plicoGenNT.macro in your .jmol/macros directory as described in Macro.
# POLYMERAZE - Jmol script by Ron Mignery # v1.9 beta 5/16/2014 -lc all functions # # POLYMERAZE takes a string message encoding a nucleotide (nt) sequence # and generates a corresponding double helix one nt at a time from the # 5' terminus to the 3' terminus rotating the emerging helix as it goes. # # The resulting polynucleotide defaults to an open B-form. If the script "to_ab_nt" # is available, it prompts to converts to a regular B-form if DNA # or to a regular A-form if RNA or mixed. # # The message is a string entered by the user at a prompt. # It may be typed in or pasted in and be of any length # If prepended with '3' then the string is considered as 3' to 5' # If prepended with 'R' then RNA is generated instead of DNA (Ts convert to Us) # If prepended with 'S' then a single strand helix is produced # If prepended with 'M' then a mixed helix is produced where the first # strand is DNA and the second RNA - multiple prepends are allowed # though 'M' is inconsistent with 'R' or 'S' # # If the 3d character is ':' then the two chains are labeled by the # two preceding characters instead of the default 'A' and 'B' # Likewise if the 2d character is ':' then the presumably single chain is # labeled by the single preceding character # # The IUPAC/IUBMB 1 letter code is used: # A=Adenine C=Cytosine G=Guanine T=Thymine U=Uracil # The following constant values determine the pitch of the helices kC5O5PO3 = -27.0 kO5PO3C3 = -117.8 kPO3C3C4 = -171.9 kO3C3C4C5 = 121 kC3C4C5O5 = 54 kC4C5O5P = 164 kPu = 65 kPy = 52 gChain1 = 'A' # The default chain id gChain2 = 'B' # The default complementary chain id gA = "" gSeq = "" # Lookup 3 letter code from 1 letter code kNt3from1 = {"A":" DA", "C":" DC", "G":" DG", "T":" DT", "U":" DU", "D":" DD", "X":" DX"} kNtComp = {"A":"T", "C":"G", "G":"C", "T":"A", "U":"A", "D":"G", "X":"C"} # Generate PDB atom record # Writes gNa or gNb function gen_atom(atomname, group, resno, xyz, comp) { # Fixed column format: #ATOM 500 O4' DA B 29 -3.745 7.211 45.474 while (atomname.size < 3) { atomname += " "; } var a = format("ATOM %5d %4s %3s ", (comp ? gNb : gNa), atomname, group ) a += format("%s%4d %8.3f", (comp ? gChain2 : gChain1), resno, xyz[1] ) a += format("%8.3f%8.3f\n", xyz[2], xyz[3] ) if (comp) gNb++; else gNa++ return a }; # Generate a PDB nucleotide record set # Calls gen_atom that writes gNa or gNb function gen_nt(i, nt, rna, comp) { # From constructed nucleotides var P0 = [0.000, 0.000, 0.000] var OP1= [-0.973,0.363,-1.067] var OP2= [0.297,-1.428, 0.272] var O5p= [1.351, 0.795,-0.286] var C5p= [1.345, 2.211,-0.125] var C4p= [2.732, 2.786,-0.255] var O4p= [3.413, 2.900, 1.019] var C3p= [3.670, 2.020,-1.178] var O3p= [4.269, 2.960,-2.051] var C2p= [4.717, 1.445,-0.238] var O2p= [6.046, 1.365,-0.884] var C1p= [4.758, 2.505, 0.846] var N1ct= [5.277, 2.056, 2.143] var C2ct= [6.236, 2.836, 2.740] var O2ct= [6.670, 3.853, 2.230] var N3ct= [6.674, 2.381, 3.958] var C4ct= [6.256, 1.245, 4.622] var NO4ct=[6.726, 0.972, 5.728] var C5ct= [5.255, 0.455, 3.924] var C6ct= [4.820, 0.900, 2.737] var nC7ct=[4.762,-0.811, 4.551] var N9ag= [5.256, 2.091, 2.152] var C8ag= [4.867, 1.016, 2.913] var N7ag= [5.532, 0.894, 4.035] var C5ag= [6.425, 1.959, 4.013] var C6ag= [7.401, 2.391, 4.922] var NO6ag=[7.656, 1.780, 6.081] var N1ag= [8.118, 3.493, 4.599] var C2ag= [7.865, 4.104, 3.438] var nN2ag=[8.616, 5.197, 3.181] var N3ag= [6.968, 3.796, 2.503] var C4ag= [6.271, 2.701, 2.856] # Build PDB atom records common to all NTs var n3 = kNt3from1[nt] if (n3 = "") { n3 = " D?" } if (rna) { if (n3 == " DD") { n3 = " D" } else { n3 = n3.replace('D', ' ') } } var a = gen_atom(" P ", n3, i, P0, comp) a += gen_atom(" OP1", n3, i, OP1, comp) a += gen_atom(" OP2", n3, i, OP2, comp) a += gen_atom(" O5'", n3, i, O5p, comp) a += gen_atom(" C5'", n3, i, C5p, comp) a += gen_atom(" C4'", n3, i, C4p, comp) a += gen_atom(" O4'", n3, i, O4p, comp) a += gen_atom(" C3'", n3, i, C3p, comp) a += gen_atom(" O3'", n3, i, O3p, comp) a += gen_atom(" C2'", n3, i, C2p, comp) a += gen_atom(" C1'", n3, i, C1p, comp) if (rna) { a += gen_atom(" O2'", n3, i, O2p, comp) } # Now add NT specific atom records switch (nt) { case 'A' : a += gen_atom(" N9 ", n3, i, N9ag, comp) a += gen_atom(" C8 ", n3, i, C8ag, comp) a += gen_atom(" N7 ", n3, i, N7ag, comp) a += gen_atom(" C5 ", n3, i, C5ag, comp) a += gen_atom(" C6 ", n3, i, C6ag, comp) a += gen_atom(" N6 ", n3, i, NO6ag, comp) a += gen_atom(" N1 ", n3, i, N1ag, comp) a += gen_atom(" C2 ", n3, i, C2ag, comp) a += gen_atom(" N3 ", n3, i, N3ag, comp) a += gen_atom(" C4 ", n3, i, C4ag, comp) break; case 'C' : a += gen_atom(" N1 ", n3, i, N1ct, comp) a += gen_atom(" C2 ", n3, i, C2ct, comp) a += gen_atom(" O2 ", n3, i, O2ct, comp) a += gen_atom(" N3 ", n3, i, N3ct, comp) a += gen_atom(" C4 ", n3, i, C4ct, comp) a += gen_atom(" N4 ", n3, i, NO4ct, comp) a += gen_atom(" C5 ", n3, i, C5ct, comp) a += gen_atom(" C6 ", n3, i, C6ct, comp) break; case 'X' : case 'G' : a += gen_atom(" N9 ", n3, i, N9ag, comp) a += gen_atom(" C8 ", n3, i, C8ag, comp) a += gen_atom(" N7 ", n3, i, N7ag, comp) a += gen_atom(" C5 ", n3, i, C5ag, comp) a += gen_atom(" C6 ", n3, i, C6ag, comp) a += gen_atom(" O6 ", n3, i, NO6ag, comp) a += gen_atom(" N1 ", n3, i, N1ag, comp) a += gen_atom(" C2 ", n3, i, C2ag, comp) a += gen_atom(" N2 ", n3, i, nN2ag, comp) a += gen_atom(" N3 ", n3, i, N3ag, comp) a += gen_atom(" C4 ", n3, i, C4ag, comp) break; case 'T' : a += gen_atom(" N1 ", n3, i, N1ct, comp) a += gen_atom(" C2 ", n3, i, C2ct, comp) a += gen_atom(" O2 ", n3, i, O2ct, comp) a += gen_atom(" N3 ", n3, i, N3ct, comp) a += gen_atom(" C4 ", n3, i, C4ct, comp) a += gen_atom(" O4 ", n3, i, NO4ct, comp) a += gen_atom(" C5 ", n3, i, C5ct, comp) a += gen_atom(" C6 ", n3, i, C6ct, comp) a += gen_atom(" C7 ", n3, i, nC7ct, comp) break; case 'D' : case 'U' : a += gen_atom(" N1 ", n3, i, N1ct, comp) a += gen_atom(" C2 ", n3, i, C2ct, comp) a += gen_atom(" O2 ", n3, i, O2ct, comp) a += gen_atom(" N3 ", n3, i, N3ct, comp) a += gen_atom(" C4 ", n3, i, C4ct, comp) a += gen_atom(" O4 ", n3, i, NO4ct, comp) a += gen_atom(" C5 ", n3, i, C5ct, comp) a += gen_atom(" C6 ", n3, i, C6ct, comp) break; default : break; } return a }; # Rotate a1 on a2 in the plane of a1, a2 and a3 to the given angle # a1 and all connected except by a2 must be selected function set_angle (a1, a2, a3, toangle) { var v1 = ({(chain=gChain1) and (atomno=a1)}.xyz - {(chain=gChain1) and (atomno=a2)}.xyz) var v2 = ({(chain=gChain1) and (atomno=a3)}.xyz - {(chain=gChain1) and (atomno=a2)}.xyz) var axis = cross(v1, v2) + {(chain=gChain1) and (atomno=a2)}.xyz var curangle = angle({(chain=gChain1) and (atomno=a1)}, {(chain=gChain1) and (atomno=a2)}, {(chain=gChain1) and (atomno=a3)}) rotateselected @axis {(chain=gChain1) and (atomno=a2)} @{curangle-toangle} } # Set the dihedral to the given angle # a1 (or a4) and all connected except by a2 (or a3) must be selected # If selected < unselected ==> a2 < a3 and vice versa function set_dihedral (a1, a2, a3, a4, toangle) { var curangle = angle({(chain=gChain1) and (atomno=a1)}, {(chain=gChain1) and (atomno=a2)}, {(chain=gChain1) and (atomno=a3)}, {(chain=gChain1) and (atomno=a4)}) rotateselected {(chain=gChain1) and (atomno=a2)} {(chain=gChain1) and (atomno=a3)} @{toangle-curangle} } function count_atoms(seq, rna, start, finish) { var ntc = {"A":21, "C":20, "G":22, "T":20, "U":19} var cnt = 0 for (var i = start; i <= finish; i++) { cnt += (ntc[seq[i]] + (rna ? 1 : 0)) } return cnt } # Generate a helix function gen_helix_strand(reverse, drm, double) { var cha = ":" + gChain1 var chb = ":" + gChain2 var seq = "" if (reverse) { for (var i = gSeq.count; i > 0; i--) { seq += gSeq[i]%9999%0 } } else { seq = gSeq%9999%0 } var cSeq = "" if (double) { for (var i = seq.count; i > 0; i--) { cSeq += ((seq[i] == 'A') and (drm > 0)) ? "U" : kNtComp[seq[i]] } } var aAtomCount = count_atoms(seq, (drm == 1), 1, seq.count) var bAtomCount = count_atoms(cSeq, (drm > 0), 1, cSeq.count) gNa = 1 # global new P atom index for chain A gNb = 0 if (double) { gNb = (aAtomCount + bAtomCount - count_atoms(cSeq, (drm>0), cSeq.count, cSeq.count)) # last P in cSeq } # Find last linkable P if any var aResno = 1 var pNa = 1 # previous gNa for (var i = all.count; i > 0; i--) { # If A strand found at {0,0,0} if (distance({atomno=i}, {0,0,0}) < 0.1) { if ({atomno=i}.chain == gChain1) { # Add to existing strand echo "Adding to existing strand..." pNa = i aResno = {chain=gChain1}.resno.max + 1 gNa = {chain=gChain1}.atomno.max + 1 gNb += gNa # Bump up all B chain atomno and resno # KLUDGE to work-around of Jmol's lack of resno rewrite savNb = gNb gNb = aAtomCount + bAtomCount + gNa gA = "data \"append nt\"\n" # global PDB atom record for (j = 1; j <= all.atomno.max; j++) { if ({atomno=j}.chain == gChain2) { gA += gen_atom({atomno=j}.atomName, {atomno=j}.group, ({atomno=j}.resno+seq.count+cSeq.count), array({atomno=j}.x, {atomno=j}.y, {atomno=j}.z), true) } } gA += "end \"append nt\"" delete @chb script inline @{gA} # <== new atoms added here gNb = savNb break; } } } var bResno = aResno + seq.count + cSeq.count - 1 var nNa = gNa # new P var nNb = 0#bBase # new comp P # For each NT set appendnew false for (var i = 1; i <= seq.count; i++) { if (seq[i] == "") { continue } # Move polynucleotide O3p to bond distance 1.59 from new nt P var pO3 = { -0.759, 0.925, 1.048} if (double) { select (@cha or @chb) } else { select (@cha) } if ((i + aResno) > 2) { var nO3 = {@cha and (atomno=@{pNa+8})}.xyz var xyz = @{pO3 - nO3} translateselected @xyz } # Gen NT ================================================== gA = "data \"append nt\"\n" # global PDB atom record gA += gen_nt(aResno, seq[i], (drm == 1), FALSE); # gNa updated if (double) { nNb = gNb var nti = cSeq.count-i+1 gA += gen_nt(bResno, cSeq[nti], (drm > 0), TRUE); # gNb++ if (i > 0) { gNb -= count_atoms(cSeq, (drm>0), nti-1, nti) } } gA += "end \"append nt\"" script inline @{gA} # <== new atoms added here # Flip comp to comp strand if (double) { select @{"" + bResno + chb} var v1={8.238, 2.809, 6.004} var v2={8.461, 4.646, 4.125} rotateSelected @v2 @v1 180.0 } # If any older NTs if ((i + aResno) > 2) { # Set the angles between the new NT and the old NTs select (@cha and (atomno < nNa) or (@chb and (resno != bResno))) set_angle(nNa, pNa+8, pNa+7, 120.0) select (@cha and (atomno < @{nNa+3}) or (@chb and (resno != bResno))) set_dihedral(nNa+4, nNa+3, nNa, pNa+8, kC5O5PO3) select (@cha and (atomno < nNa) or (@chb and (resno != bResno))) set_dihedral(nNa+3, nNa, pNa+8, pNa+7, kO5PO3C3) set_dihedral(nNa, pNa+8, pNa+7, pNa+5, kPO3C3C4) } # Step new and previous N aResno++; bResno-- pNa = nNa nNa = gNa; nNb = gNb } # Make the nucleotide bonds connect # Clean up select all refresh # Convert to A-form if RNA or mixed else B-form try { script $SCRIPT_PATH$toabnt.spt var s = format("Convert to %s-form?", ((drm > 0) ? "A" : "B")) var p = prompt(s, "Yes|No", TRUE) if (p = "Yes") { to_ab_nt_auto(gChain1, (drm > 0)) } } catch { } } # Generate a helix or two function plico_gen_helix(seq) { if (gPlicoRecord != "") { var g = format("show file \"%s\"", gPlicoRecord) var ls = script(g) if (ls.find("FileNotFoundException")) { ls = "" } ls += format("plico_gen_helix(\"%s\");", gSeq) write var ls @gPlicoRecord } var single = FALSE var reverse = FALSE var drm = 0 var done = FALSE gSeq = seq%9999%0 print format ("Seq=%s", gSeq) if (gSeq[2] == ':') { gChain1 = gSeq[1] gSeq = gSeq[3][9999] } else if (gSeq[3] == ':') { gChain1 = gSeq[1] gChain2 = gSeq[2] gSeq = gSeq[4][9999] } while (done == FALSE) { done = TRUE; if (gSeq[1] == 'S') { single = TRUE; done = FALSE; } else if (gSeq[1] == '3') { reverse = TRUE; done = FALSE; } else if (gSeq[1] == 'R') { drm = 1; done = FALSE; } else if (gSeq[1] == 'M') { drm = 2; done = FALSE; } if (done == FALSE) { gSeq = gSeq[2][9999] } } if (drm = 1) { gSeq = gSeq.replace('T', 'U') } else { gSeq = gSeq.replace('U', 'T') } # Generate gen_helix_strand(reverse, drm, single ? FALSE : TRUE) } function plico_gen_nt { echo Generating Nucleotide Helix # Get the sequence from the user var seq = prompt("Enter NT sequence (<3RSM>ACGTU)", "")%9999%0 if ((seq != "NULL") and (seq.count > 0)) { plico_gen_helix(seq) } } # end of polymeraze.spt