Recycling Corner/DNA Generator

From Jmol
Revision as of 19:50, 19 February 2014 by Remig (talk | contribs)
Jump to navigation Jump to search

POLYMERAZE takes a string message encoding a nucleotide (nt) sequence and generates a corresponding double helix one nt at a time from the 5' terminus to the 3' terminus rotating the emerging helix as it goes.

The message is a string entered by the user at a prompt. It may be typed in or pasted in and be of any length. If prepended with '3' then the string is considered as 3' to 5'. If prepended with 'R' then RNA is generated instead of DNA. If prepended with 'S' then a single strand helix is produced. If prepended with 'M' then a mixed helix is produced where the first strand is DNA and the second RNA. Multiple prepends are allowed (though 'M' would be inconsistent with 'R' or 'S').

If the 3d character is ':' then the two chains are labeled by the two preceding characters instead of the default 'A' and 'B'. Likewise if the 2d character is ':' then the presumably single chain is labeled by the preceding single character.

A polynucleotide may be added onto by subsequent runs if the previous helices are not moved away. Note that a single chain helix could then be added to a double chain or RNA to DNA or whatever. Have fun...

The IUPAC/IUBMB 1 letter code is used: A=Adenine C=Cytosine G=Guanine T=Thymine U=Uracil

The top level function plicoGenNt prompts the user for input.

The top level function plicoGenHelix accepts a string as a parameter.

Polymeraze is a member of the Plico suite of protein folding tools. It may be installed and accessed as a macro with the file:

Title=PLICO Generate Polynucleotide
Script=script <path to your script folder>/polymeraze.spt;plicoGenNT

saved as plicoGenNT.macro in your .jmol/macros folder as described in Macro.

#   POLYMERAZE - Jmol script by Ron Mignery
#   v1.5 beta    2/19/2014 -handle immutable strings for 14.0.9
#
#   POLYMERAZE takes a string message encoding a nucleotide (nt) sequence
#   and generates a corresponding double helix one nt at a time from the
#   5' terminus to the 3' terminus rotating the emerging helix as it goes.
#
#   The message is a string entered by the user at a prompt.
#   It may be typed in or pasted in and be of any length
#   If prepended with '3' then the string is considered as 3' to 5'
#   If prepended with 'R' then RNA is generated instead of DNA
#   If prepended with 'S' then a single strand helix is produced
#   If prepended with 'M' then a mixed helix is produced where the first
#   strand is DNA and the second RNA - multiple prepends are allowed
#   though 'M' is inconsistent with 'R' or 'S' 
#
#   If the 3d character is ':' then the two chains are labeled by the
#   two preceding characters instead of the default 'A' and 'B'
#   Likewise if the 2d character is ':' then the presumably single chain is
#   labeled by the single preceding character
#
#   The IUPAC/IUBMB 1 letter code is used:
#   A=Adenine C=Cytosine G=Guanine T=Thymine U=Uracil

# The following constant values determine the pitch of the helices
var kC5O5PO3 = -27.0
var kO5PO3C3 = -117.8
var kPO3C3C4 = -171.9
var gCHAIN1 = 'A'    # The chain id
var gCHAIN2 = 'B'    # The complementary chain id
var gA = ""
var gSeq = ""

# Lookup 3 letter code from 1 letter code
var kNt3from1 = {"A":" DA", "C":" DC", "G":" DG", "T":" DT", "U":" DU"}
var kNtComp = {"A":"T", "C":"G", "G":"C", "T":"A", "U":"A"}

# Generate PDB atom record
# Writes gNa or gNb
function genAtom(atomname, group, resno, xyz, comp) {
    # Fixed column format:
    #ATOM    500  O4'  DA B  29      -3.745   7.211  45.474
    while (atomname.size < 3) {
        atomname += " ";
    }
    var a =  format("ATOM  %5d %4s %3s ", (comp ? gNb : gNa), atomname, group )
    a +=  format("%s%4d    %8.3f", (comp ? gCHAIN2 : gCHAIN1), resno, xyz[1] )          
    a +=  format("%8.3f%8.3f\n", xyz[2], xyz[3] )
    if (comp) gNb++; else gNa++
        
    return a
};

# Generate a PDB nucleotide record set
# Calls genAtom that writes gNa or gNb
function genNT(i, nt, rna, comp) {

    # From constructed nucleotides
    var P0 =  [0.000, 0.000, 0.000]
    var OP1=  [-0.973,0.363,-1.067]
    var OP2=  [0.297,-1.428, 0.272]
    var O5p=  [1.351, 0.795,-0.286]
    var C5p=  [1.345, 2.211,-0.125]
    var C4p=  [2.732, 2.786,-0.255]
    var O4p=  [3.413, 2.900, 1.019]
    var C3p=  [3.670, 2.020,-1.178]
    var O3p=  [4.269, 2.960,-2.051]
    var C2p=  [4.717, 1.445,-0.238]
    var O2p=  [6.046, 1.365,-0.884]
    var C1p=  [4.758, 2.505, 0.846]
    
    var N1ct= [5.277, 2.056, 2.143]
    var C2ct= [6.236, 2.836, 2.740]
    var O2ct= [6.670, 3.853, 2.230]
    var N3ct= [6.674, 2.381, 3.958]
    var C4ct= [6.256, 1.245, 4.622]
    var NO4ct [6.726, 0.972, 5.728]
    var C5ct= [5.255, 0.455, 3.924]
    var C6ct= [4.820, 0.900, 2.737]
    var nC7ct [4.762,-0.811, 4.551]
    
    var N9ag= [5.256, 2.091, 2.152]
    var C8ag= [4.867, 1.016, 2.913]
    var N7ag= [5.532, 0.894, 4.035]
    var C5ag= [6.425, 1.959, 4.013]
    var C6ag= [7.401, 2.391, 4.922]
    var NO6ag=[7.656, 1.780, 6.081]
    var N1ag= [8.118, 3.493, 4.599]
    var C2ag= [7.865, 4.104, 3.438]
    var nN2ag [8.616, 5.197, 3.181]
    var N3ag= [6.968, 3.796, 2.503]
    var C4ag= [6.271, 2.701, 2.856]
    
    # Build PDB atom records common to all NTs
    var n3 = kNt3from1[nt]
    if (n3 = "") {
        n3 = " D?"
    }
    if (rna) {
        n3 = n3.replace("D", " ")
    }
    var a = genAtom(" P  ", n3, i, P0, comp)
    a += genAtom(" OP1", n3, i, OP1, comp)
    a += genAtom(" OP2", n3, i, OP2, comp)
    a += genAtom(" O5'", n3, i, O5p, comp)
    a += genAtom(" C5'", n3, i, C5p, comp)
    a += genAtom(" C4'", n3, i, C4p, comp)
    a += genAtom(" O4'", n3, i, O4p, comp)
    a += genAtom(" C3'", n3, i, C3p, comp)
    a += genAtom(" O3'", n3, i, O3p, comp)
    a += genAtom(" C2'", n3, i, C2p, comp)
    a += genAtom(" C1'", n3, i, C1p, comp)
    if (rna) {
        a += genAtom(" O2'", n3, i, O2p, comp)
    }

    # Now add NT specific atom records
    switch (nt) {
    case 'A' :
        a += genAtom(" N9 ", n3, i, N9ag, comp)
        a += genAtom(" C8 ", n3, i, C8ag, comp)
        a += genAtom(" N7 ", n3, i, N7ag, comp)
        a += genAtom(" C5 ", n3, i, C5ag, comp)
        a += genAtom(" C6 ", n3, i, C6ag, comp)
        a += genAtom(" N6 ", n3, i, NO6ag, comp)
        a += genAtom(" N1 ", n3, i, N1ag, comp)
        a += genAtom(" C2 ", n3, i, C2ag, comp)
        a += genAtom(" N3 ", n3, i, N3ag, comp)
        a += genAtom(" C4 ", n3, i, C4ag, comp)
        break;
    case 'C' :
        a += genAtom(" N1 ", n3, i, N1ct, comp)
        a += genAtom(" C2 ", n3, i, C2ct, comp)
        a += genAtom(" O2 ", n3, i, O2ct, comp)
        a += genAtom(" N3 ", n3, i, N3ct, comp)
        a += genAtom(" C4 ", n3, i, C4ct, comp)
        a += genAtom(" N4 ", n3, i, NO4ct, comp)
        a += genAtom(" C5 ", n3, i, C5ct, comp)
        a += genAtom(" C6 ", n3, i, C6ct, comp)
        break;
    case 'G' :
        a += genAtom(" N9 ", n3, i, N9ag, comp)
        a += genAtom(" C8 ", n3, i, C8ag, comp)
        a += genAtom(" N7 ", n3, i, N7ag, comp)
        a += genAtom(" C5 ", n3, i, C5ag, comp)
        a += genAtom(" C6 ", n3, i, C6ag, comp)
        a += genAtom(" O6 ", n3, i, NO6ag, comp)
        a += genAtom(" N1 ", n3, i, N1ag, comp)
        a += genAtom(" C2 ", n3, i, C2ag, comp)
        a += genAtom(" N2 ", n3, i, nN2ag, comp)
        a += genAtom(" N3 ", n3, i, N3ag, comp)
        a += genAtom(" C4 ", n3, i, C4ag, comp)
        break;
    case 'T' :
        a += genAtom(" N1 ", n3, i, N1ct, comp)
        a += genAtom(" C2 ", n3, i, C2ct, comp)
        a += genAtom(" O2 ", n3, i, O2ct, comp)
        a += genAtom(" N3 ", n3, i, N3ct, comp)
        a += genAtom(" C4 ", n3, i, C4ct, comp)
        a += genAtom(" O4 ", n3, i, NO4ct, comp)
        a += genAtom(" C5 ", n3, i, C5ct, comp)
        a += genAtom(" C6 ", n3, i, C6ct, comp)
        a += genAtom(" C7 ", n3, i, nC7ct, comp)
        break;
    case 'U' :
        a += genAtom(" N1 ", n3, i, N1ct, comp)
        a += genAtom(" C2 ", n3, i, C2ct, comp)
        a += genAtom(" O2 ", n3, i, O2ct, comp)
        a += genAtom(" N3 ", n3, i, N3ct, comp)
        a += genAtom(" C4 ", n3, i, C4ct, comp)
        a += genAtom(" O4 ", n3, i, NO4ct, comp)
        a += genAtom(" C5 ", n3, i, C5ct, comp)
        a += genAtom(" C6 ", n3, i, C6ct, comp)
        break;
    default :
        break;
    }

    return a
};

# Rotate a1 on a2 in the plane of a1, a2 and a3 to the given angle
# a1 and all connected except by a2 must be selected 
function setAngle (a1, a2, a3, toangle) {
    var v1={atomno = a1}.xyz - {atomno = a2}.xyz
    var v2={atomno = a3}.xyz - {atomno = a2}.xyz
    var axis = cross(v1, v2) + {atomno = a2}.xyz
    var curangle =  angle({atomno=a1}, {atomno=a2}, {atomno=a3})
    rotateselected @axis {atomno = a2} @{curangle-toangle}
}

# Set the dihedral to the given angle
# a1 (or a4) and all connected except by a2 (or a3) must be selected 
# If selected < unselected ==> a2 < a3 and vice versa
function setDihedral (a1, a2, a3, a4, toangle) {
    var curangle =  angle({atomno=a1}, {atomno=a2}, {atomno=a3}, {atomno=a4})
    rotateselected {atomno=a2} {atomno=a3} @{toangle-curangle}
}

function countAtoms(seq, rna, start, finish) {
    var ntc = {"A":21, "C":20, "G":22, "T":20, "U":19}
    var cnt = 0
    for (var i = start; i <= finish; i++) {
        cnt += (ntc[seq[i]] + (rna ? 1 : 0))
    }
    return cnt
}

# Generate a helix
function genHelixStrand(gSeq, reverse, drm, double) {
    var cha = ":" + gCHAIN1
    var chb = ":" + gCHAIN2
    var seq = ""
    if (reverse) {
        for (var i = gSeq.count; i > 0; i--) {
            seq += gSeq[i]%9999%0
        }
    }
    else {
        seq = gSeq%9999%0
    }

    var cSeq = ""
    if (double) {
        for (var i = seq.count; i > 0; i--) {
            cSeq += ((seq[i] == 'A') and (dr > 0)) ? "U" : kNtComp[seq[i]]
        }
    }
    var aAtomCount = countAtoms(seq, (drm == 1), 1, seq.count)
    var bAtomCount = countAtoms(cSeq, (drm > 0), 1, cSeq.count)
    
    gNa = 1 # global new P atom index for chain A
    gNb = 0
    if (double) {
        gNb = (aAtomCount + bAtomCount
         - countAtoms(cSeq, (drm>0), cSeq.count, cSeq.count)) # last P in cSeq
    }
    #var bBase = (all.count + countAtoms(seq, (drm > 0), seq.count) + 1)

    # Find last linkable P if any
    var aResno = 1
    var pNa = 1    # previous gNa
    for (var i = all.count; i  > 0; i--) {

        # If A strand found at {0,0,0}
        if (distance({atomno=i}, {0,0,0})  < 0.1) {
            if ({atomno=i}.chain == gCHAIN1) {
            
                # Add to existing strand
                echo "Adding to existing strand..."
                pNa = i
                aResno = {chain=gCHAIN1}.resno.max + 1
                gNa = {chain=gCHAIN1}.atomno.max + 1
                gNb += gNa
                
                # Bump up all B chain atomno and resno
                # KLUDGE to work-around of Jmol's lack of resno rewrite
                savNb = gNb
                gNb = aAtomCount + bAtomCount + gNa
                gA = "data \"append nt\"\n"    # global PDB atom record
                for (j = 1; j <= all.atomno.max; j++) {
                    if ({atomno=j}.chain == gCHAIN2) {
                        gA += genAtom({atomno=j}.atomName, {atomno=j}.group,
                            ({atomno=j}.resno+seq.count+cSeq.count),
                            array({atomno=j}.x, {atomno=j}.y, {atomno=j}.z), true)
                    } 
                }
                gA += "end \"append nt\""
                delete @chb
                script inline @{gA} # <== new atoms added here
                gNb = savNb
                break;
            }
        }
    }

    var bResno = aResno + seq.count + cSeq.count - 1
    
    var nNa = gNa    # new P
    var nNb = 0#bBase  # new comp P

    # For each NT
    set appendnew false
    for (var i = 1; i <= seq.count; i++) {
        
        if (seq[i] == "") {
            continue
        }
           
        # Move polynucleotide O3p to bond distance from new nt P
        var pO3 = {-0.521, 0.638, 1.234}
        select all
        if ((i + aResno) > 2) {
            var nO3 =  {atomno=@{pNa+8}}.xyz
            var xyz = @{pO3 - nO3}
            translateselected @xyz
        }
        
        # Gen NT ==================================================
        gA = "data \"append nt\"\n"    # global PDB atom record
        gA += genNT(aResno, seq[i], (drm == 1), FALSE); # gNa updated
        if (double) {
            nNb = gNb
            var nti = cSeq.count-i+1
            gA += genNT(bResno, cSeq[nti], (drm > 0), TRUE); # gNb++
            if (i > 0) {
                gNb -= countAtoms(cSeq, (drm>0), nti-1, nti)
            }
        }
        gA += "end \"append nt\""
        script inline @{gA} # <== new atoms added here
        
        # Flip comp to comp strand
        if (double) {
            select @{"" + bResno + chb}
            var v1={8.238, 2.809, 6.004}
            var v2={8.461, 4.646, 4.125}
            rotateSelected @v2 @v1 180.0
        }
        
        # If any older NTs
        if ((i + aResno) > 2) {
            # Set the angles between the new NT and the old NTs
            select (@cha and (atomno < nNa) or (@chb and (resno != bResno)))
            setAngle(nNa, pNa+8, pNa+7, 120.0)

            select (@cha and (atomno < @{nNa+3}) or (@chb and (resno != bResno)))
            setDihedral(nNa+4, nNa+3, nNa, pNa+8, kC5O5PO3)
            
            select (@cha and (atomno < nNa) or (@chb and (resno != bResno)))
            setDihedral(nNa+3, nNa, pNa+8, pNa+7, kO5PO3C3)
            
            setDihedral(nNa, pNa+8, pNa+7, pNa+5, kPO3C3C4)
        }
        
        # Step new and previous N
        aResno++; bResno--
        pNa = nNa
        nNa = gNa; nNb = gNb
    }
    
    # Make the nucleotide bonds
    connect
    
    # Clean up
    select all
    print format("%d atoms generated for chain %s", gNa+gNb,
        (comp ? gCHAIN2 : gCHAIN1))
}

# Generate a helix or two
function plicoGenHelix(gSeq) {

    if (gPlicoRecord != "") {
        var g = format("show file \"%s\"", gPlicoRecord)
        var ls = script(g)
        if (ls.find("FileNotFoundException")) {
            ls = ""
        }
        ls += format("plicoGenHelix(\"%s\");", gSeq)
        write var ls @gPlicoRecord
    }
    
    var single = FALSE
    var reverse = FALSE
    var drm = 0
    var done = FALSE
    gSeq = gSeq%9999%0
    print format ("Seq=%s", gSeq)
    
    if (gSeq[2] == ':') {
        gCHAIN1 = gSeq[1]
        gSeq = gSeq[3][9999]
    }
    else if (gSeq[3] == ':') {
        gCHAIN1 = gSeq[1]
        gCHAIN2 = gSeq[2]
        gSeq = gSeq[3][9999]
    }
    while (done == FALSE) {
        done = TRUE;
        if (gSeq[1] == 'S') {
            single = TRUE;
            done = FALSE;
        }
        else if (gSeq[1] == '3') {
            reverse = TRUE;
            done = FALSE;
        }
        else if (gSeq[1] == 'R') {
            drm = 1;
            done = FALSE;
        }
        else if (gSeq[1] == 'M') {
            drm = 2;
            done = FALSE;
        }
        if (done == FALSE) {
            gSeq = gSeq[2][9999]
        }
    }
    
    # Generate
    genHelixStrand(gSeq, reverse, drm, single ? FALSE : TRUE)

}

function plicoGenNT {
    echo Generating Nuleotide Helix
    
    # Get the sequence from the user
    gSeq = prompt("Enter NT sequence (<3RSM>ACGTU)", "")%9999%0
    if ((gSeq != "NULL") and (gSeq.count > 0)) {
        plicoGenHelix(gSeq)
    }
}
# end of polymeraze.spt

Contributors

Remig