Difference between revisions of "Recycling Corner/DNA Generator"
m |
(Do not var globals) |
||
Line 25: | Line 25: | ||
<pre># POLYMERAZE - Jmol script by Ron Mignery | <pre># POLYMERAZE - Jmol script by Ron Mignery | ||
− | # v1. | + | # v1.8 beta 4/3/2014 -do not var globals for Jmol 14.0.13+ |
# | # | ||
# POLYMERAZE takes a string message encoding a nucleotide (nt) sequence | # POLYMERAZE takes a string message encoding a nucleotide (nt) sequence | ||
Line 42: | Line 42: | ||
# If prepended with 'M' then a mixed helix is produced where the first | # If prepended with 'M' then a mixed helix is produced where the first | ||
# strand is DNA and the second RNA - multiple prepends are allowed | # strand is DNA and the second RNA - multiple prepends are allowed | ||
− | # though 'M' is inconsistent with 'R' or 'S' | + | # though 'M' is inconsistent with 'R' or 'S' |
# | # | ||
# If the 3d character is ':' then the two chains are labeled by the | # If the 3d character is ':' then the two chains are labeled by the | ||
Line 53: | Line 53: | ||
# The following constant values determine the pitch of the helices | # The following constant values determine the pitch of the helices | ||
− | + | kC5O5PO3 = -27.0 | |
− | + | kO5PO3C3 = -117.8 | |
− | + | kPO3C3C4 = -171.9 | |
− | + | kO3C3C4C5 = 121 | |
− | + | kC3C4C5O5 = 54 | |
− | + | kC4C5O5P = 164 | |
− | + | kPu = 65 | |
− | + | kPy = 52 | |
− | + | gChain1 = 'A' # The default chain id | |
− | + | gChain2 = 'B' # The default complementary chain id | |
− | + | gA = "" | |
− | + | gSeq = "" | |
# Lookup 3 letter code from 1 letter code | # Lookup 3 letter code from 1 letter code | ||
− | + | kNt3from1 = {"A":" DA", "C":" DC", "G":" DG", "T":" DT", "U":" DU", "D":" DD", "X":" DX"} | |
− | + | kNtComp = {"A":"T", "C":"G", "G":"C", "T":"A", "U":"A", "D":"G", "X":"C"} | |
# Generate PDB atom record | # Generate PDB atom record | ||
Line 79: | Line 79: | ||
} | } | ||
var a = format("ATOM %5d %4s %3s ", (comp ? gNb : gNa), atomname, group ) | var a = format("ATOM %5d %4s %3s ", (comp ? gNb : gNa), atomname, group ) | ||
− | a += format("%s%4d %8.3f", (comp ? gChain2 : gChain1), resno, xyz[1] ) | + | a += format("%s%4d %8.3f", (comp ? gChain2 : gChain1), resno, xyz[1] ) |
a += format("%8.3f%8.3f\n", xyz[2], xyz[3] ) | a += format("%8.3f%8.3f\n", xyz[2], xyz[3] ) | ||
if (comp) gNb++; else gNa++ | if (comp) gNb++; else gNa++ | ||
− | + | ||
return a | return a | ||
}; | }; | ||
Line 103: | Line 103: | ||
var O2p= [6.046, 1.365,-0.884] | var O2p= [6.046, 1.365,-0.884] | ||
var C1p= [4.758, 2.505, 0.846] | var C1p= [4.758, 2.505, 0.846] | ||
− | + | ||
var N1ct= [5.277, 2.056, 2.143] | var N1ct= [5.277, 2.056, 2.143] | ||
var C2ct= [6.236, 2.836, 2.740] | var C2ct= [6.236, 2.836, 2.740] | ||
Line 113: | Line 113: | ||
var C6ct= [4.820, 0.900, 2.737] | var C6ct= [4.820, 0.900, 2.737] | ||
var nC7ct=[4.762,-0.811, 4.551] | var nC7ct=[4.762,-0.811, 4.551] | ||
− | + | ||
var N9ag= [5.256, 2.091, 2.152] | var N9ag= [5.256, 2.091, 2.152] | ||
var C8ag= [4.867, 1.016, 2.913] | var C8ag= [4.867, 1.016, 2.913] | ||
Line 125: | Line 125: | ||
var N3ag= [6.968, 3.796, 2.503] | var N3ag= [6.968, 3.796, 2.503] | ||
var C4ag= [6.271, 2.701, 2.856] | var C4ag= [6.271, 2.701, 2.856] | ||
− | + | ||
# Build PDB atom records common to all NTs | # Build PDB atom records common to all NTs | ||
var n3 = kNt3from1[nt] | var n3 = kNt3from1[nt] | ||
Line 132: | Line 132: | ||
} | } | ||
if (rna) { | if (rna) { | ||
− | n3 = n3.replace("D", " ") | + | if (n3 == " DD") { |
+ | n3 = " D" | ||
+ | } | ||
+ | else { | ||
+ | n3 = n3.replace("D", " ") | ||
+ | } | ||
} | } | ||
var a = genAtom(" P ", n3, i, P0, comp) | var a = genAtom(" P ", n3, i, P0, comp) | ||
Line 173: | Line 178: | ||
a += genAtom(" C6 ", n3, i, C6ct, comp) | a += genAtom(" C6 ", n3, i, C6ct, comp) | ||
break; | break; | ||
+ | case 'X' : | ||
case 'G' : | case 'G' : | ||
a += genAtom(" N9 ", n3, i, N9ag, comp) | a += genAtom(" N9 ", n3, i, N9ag, comp) | ||
Line 197: | Line 203: | ||
a += genAtom(" C7 ", n3, i, nC7ct, comp) | a += genAtom(" C7 ", n3, i, nC7ct, comp) | ||
break; | break; | ||
+ | case 'D' : | ||
case 'U' : | case 'U' : | ||
a += genAtom(" N1 ", n3, i, N1ct, comp) | a += genAtom(" N1 ", n3, i, N1ct, comp) | ||
Line 215: | Line 222: | ||
# Rotate a1 on a2 in the plane of a1, a2 and a3 to the given angle | # Rotate a1 on a2 in the plane of a1, a2 and a3 to the given angle | ||
− | # a1 and all connected except by a2 must be selected | + | # a1 and all connected except by a2 must be selected |
function setAngle (a1, a2, a3, toangle) { | function setAngle (a1, a2, a3, toangle) { | ||
var v1 = ({(chain=gChain1) and (atomno=a1)}.xyz | var v1 = ({(chain=gChain1) and (atomno=a1)}.xyz | ||
Line 228: | Line 235: | ||
# Set the dihedral to the given angle | # Set the dihedral to the given angle | ||
− | # a1 (or a4) and all connected except by a2 (or a3) must be selected | + | # a1 (or a4) and all connected except by a2 (or a3) must be selected |
# If selected < unselected ==> a2 < a3 and vice versa | # If selected < unselected ==> a2 < a3 and vice versa | ||
function setDihedral (a1, a2, a3, a4, toangle) { | function setDihedral (a1, a2, a3, a4, toangle) { | ||
Line 268: | Line 275: | ||
var aAtomCount = countAtoms(seq, (drm == 1), 1, seq.count) | var aAtomCount = countAtoms(seq, (drm == 1), 1, seq.count) | ||
var bAtomCount = countAtoms(cSeq, (drm > 0), 1, cSeq.count) | var bAtomCount = countAtoms(cSeq, (drm > 0), 1, cSeq.count) | ||
− | + | ||
gNa = 1 # global new P atom index for chain A | gNa = 1 # global new P atom index for chain A | ||
gNb = 0 | gNb = 0 | ||
Line 284: | Line 291: | ||
if (distance({atomno=i}, {0,0,0}) < 0.1) { | if (distance({atomno=i}, {0,0,0}) < 0.1) { | ||
if ({atomno=i}.chain == gChain1) { | if ({atomno=i}.chain == gChain1) { | ||
− | + | ||
# Add to existing strand | # Add to existing strand | ||
echo "Adding to existing strand..." | echo "Adding to existing strand..." | ||
Line 291: | Line 298: | ||
gNa = {chain=gChain1}.atomno.max + 1 | gNa = {chain=gChain1}.atomno.max + 1 | ||
gNb += gNa | gNb += gNa | ||
− | + | ||
# Bump up all B chain atomno and resno | # Bump up all B chain atomno and resno | ||
# KLUDGE to work-around of Jmol's lack of resno rewrite | # KLUDGE to work-around of Jmol's lack of resno rewrite | ||
Line 302: | Line 309: | ||
({atomno=j}.resno+seq.count+cSeq.count), | ({atomno=j}.resno+seq.count+cSeq.count), | ||
array({atomno=j}.x, {atomno=j}.y, {atomno=j}.z), true) | array({atomno=j}.x, {atomno=j}.y, {atomno=j}.z), true) | ||
− | } | + | } |
} | } | ||
gA += "end \"append nt\"" | gA += "end \"append nt\"" | ||
Line 314: | Line 321: | ||
var bResno = aResno + seq.count + cSeq.count - 1 | var bResno = aResno + seq.count + cSeq.count - 1 | ||
− | + | ||
var nNa = gNa # new P | var nNa = gNa # new P | ||
var nNb = 0#bBase # new comp P | var nNb = 0#bBase # new comp P | ||
Line 321: | Line 328: | ||
set appendnew false | set appendnew false | ||
for (var i = 1; i <= seq.count; i++) { | for (var i = 1; i <= seq.count; i++) { | ||
− | + | ||
if (seq[i] == "") { | if (seq[i] == "") { | ||
continue | continue | ||
} | } | ||
− | + | ||
# Move polynucleotide O3p to bond distance 1.59 from new nt P | # Move polynucleotide O3p to bond distance 1.59 from new nt P | ||
var pO3 = { -0.759, 0.925, 1.048} | var pO3 = { -0.759, 0.925, 1.048} | ||
Line 339: | Line 346: | ||
translateselected @xyz | translateselected @xyz | ||
} | } | ||
− | + | ||
# Gen NT ================================================== | # Gen NT ================================================== | ||
gA = "data \"append nt\"\n" # global PDB atom record | gA = "data \"append nt\"\n" # global PDB atom record | ||
Line 353: | Line 360: | ||
gA += "end \"append nt\"" | gA += "end \"append nt\"" | ||
script inline @{gA} # <== new atoms added here | script inline @{gA} # <== new atoms added here | ||
− | + | ||
# Flip comp to comp strand | # Flip comp to comp strand | ||
if (double) { | if (double) { | ||
Line 361: | Line 368: | ||
rotateSelected @v2 @v1 180.0 | rotateSelected @v2 @v1 180.0 | ||
} | } | ||
− | + | ||
# If any older NTs | # If any older NTs | ||
if ((i + aResno) > 2) { | if ((i + aResno) > 2) { | ||
Line 370: | Line 377: | ||
select (@cha and (atomno < @{nNa+3}) or (@chb and (resno != bResno))) | select (@cha and (atomno < @{nNa+3}) or (@chb and (resno != bResno))) | ||
setDihedral(nNa+4, nNa+3, nNa, pNa+8, kC5O5PO3) | setDihedral(nNa+4, nNa+3, nNa, pNa+8, kC5O5PO3) | ||
− | + | ||
select (@cha and (atomno < nNa) or (@chb and (resno != bResno))) | select (@cha and (atomno < nNa) or (@chb and (resno != bResno))) | ||
setDihedral(nNa+3, nNa, pNa+8, pNa+7, kO5PO3C3) | setDihedral(nNa+3, nNa, pNa+8, pNa+7, kO5PO3C3) | ||
− | + | ||
setDihedral(nNa, pNa+8, pNa+7, pNa+5, kPO3C3C4) | setDihedral(nNa, pNa+8, pNa+7, pNa+5, kPO3C3C4) | ||
} | } | ||
− | + | ||
# Step new and previous N | # Step new and previous N | ||
aResno++; bResno-- | aResno++; bResno-- | ||
Line 382: | Line 389: | ||
nNa = gNa; nNb = gNb | nNa = gNa; nNb = gNb | ||
} | } | ||
− | + | ||
# Make the nucleotide bonds | # Make the nucleotide bonds | ||
connect | connect | ||
− | + | ||
# Clean up | # Clean up | ||
select all | select all | ||
− | + | ||
# If double, convert to A-form if RNA or mixed else B-form | # If double, convert to A-form if RNA or mixed else B-form | ||
if (double) { | if (double) { | ||
Line 416: | Line 423: | ||
write var ls @gPlicoRecord | write var ls @gPlicoRecord | ||
} | } | ||
− | + | ||
var single = FALSE | var single = FALSE | ||
var reverse = FALSE | var reverse = FALSE | ||
Line 423: | Line 430: | ||
gSeq = gSeq%9999%0 | gSeq = gSeq%9999%0 | ||
print format ("Seq=%s", gSeq) | print format ("Seq=%s", gSeq) | ||
− | + | ||
if (gSeq[2] == ':') { | if (gSeq[2] == ':') { | ||
gChain1 = gSeq[1] | gChain1 = gSeq[1] | ||
Line 455: | Line 462: | ||
} | } | ||
} | } | ||
− | + | ||
# Generate | # Generate | ||
genHelixStrand(gSeq, reverse, drm, single ? FALSE : TRUE) | genHelixStrand(gSeq, reverse, drm, single ? FALSE : TRUE) | ||
Line 463: | Line 470: | ||
function plicoGenNT { | function plicoGenNT { | ||
echo Generating Nucleotide Helix | echo Generating Nucleotide Helix | ||
− | + | ||
# Get the sequence from the user | # Get the sequence from the user | ||
gSeq = prompt("Enter NT sequence (<3RSM>ACGTU)", "")%9999%0 | gSeq = prompt("Enter NT sequence (<3RSM>ACGTU)", "")%9999%0 |
Revision as of 15:28, 3 April 2014
POLYMERAZE takes a string message encoding a nucleotide (nt) sequence and generates a corresponding double helix one nt at a time from the 5' terminus to the 3' terminus rotating the emerging helix as it goes.
The message is a string entered by the user at a prompt. It may be typed in or pasted in and be of any length. If prepended with '3' then the string is considered as 3' to 5'. If prepended with 'R' then RNA is generated instead of DNA. If prepended with 'S' then a single strand helix is produced. If prepended with 'M' then a mixed helix is produced where the first strand is DNA and the second RNA. Multiple prepends are allowed (though 'M' would be inconsistent with 'R' or 'S').
If the 3d character is ':' then the two chains are labeled by the two preceding characters instead of the default 'A' and 'B'. Likewise if the 2d character is ':' then the presumably single chain is labeled by the preceding single character.
A polynucleotide may be added onto by subsequent runs if the previous helices are not moved away. Note that a single chain helix could then be added to a double chain or RNA to DNA or whatever. Have fun...
The IUPAC/IUBMB 1 letter code is used: A=Adenine C=Cytosine G=Guanine T=Thymine U=Uracil
The top level function plicoGenNt prompts the user for input.
The top level function plicoGenHelix accepts a string as a parameter.
Polymeraze is a member of the Plico suite of protein folding tools described here. It may be installed and accessed as a macro with the file:
Title=PLICO Generate Polynucleotide Script=script <path to your script folder>/polymeraze.spt;plicoGenNT
saved as plicoGenNT.macro in your .jmol/macros folder as described in Macro.
# POLYMERAZE - Jmol script by Ron Mignery # v1.8 beta 4/3/2014 -do not var globals for Jmol 14.0.13+ # # POLYMERAZE takes a string message encoding a nucleotide (nt) sequence # and generates a corresponding double helix one nt at a time from the # 5' terminus to the 3' terminus rotating the emerging helix as it goes. # # The resulting polynucleotide defaults to an open B-form. If double-stranded # and the script "toABnt" is available, it converts to a regular B-form if DNA # or to a regular A-form if RNA or mixed. # # The message is a string entered by the user at a prompt. # It may be typed in or pasted in and be of any length # If prepended with '3' then the string is considered as 3' to 5' # If prepended with 'R' then RNA is generated instead of DNA # If prepended with 'S' then a single strand helix is produced # If prepended with 'M' then a mixed helix is produced where the first # strand is DNA and the second RNA - multiple prepends are allowed # though 'M' is inconsistent with 'R' or 'S' # # If the 3d character is ':' then the two chains are labeled by the # two preceding characters instead of the default 'A' and 'B' # Likewise if the 2d character is ':' then the presumably single chain is # labeled by the single preceding character # # The IUPAC/IUBMB 1 letter code is used: # A=Adenine C=Cytosine G=Guanine T=Thymine U=Uracil # The following constant values determine the pitch of the helices kC5O5PO3 = -27.0 kO5PO3C3 = -117.8 kPO3C3C4 = -171.9 kO3C3C4C5 = 121 kC3C4C5O5 = 54 kC4C5O5P = 164 kPu = 65 kPy = 52 gChain1 = 'A' # The default chain id gChain2 = 'B' # The default complementary chain id gA = "" gSeq = "" # Lookup 3 letter code from 1 letter code kNt3from1 = {"A":" DA", "C":" DC", "G":" DG", "T":" DT", "U":" DU", "D":" DD", "X":" DX"} kNtComp = {"A":"T", "C":"G", "G":"C", "T":"A", "U":"A", "D":"G", "X":"C"} # Generate PDB atom record # Writes gNa or gNb function genAtom(atomname, group, resno, xyz, comp) { # Fixed column format: #ATOM 500 O4' DA B 29 -3.745 7.211 45.474 while (atomname.size < 3) { atomname += " "; } var a = format("ATOM %5d %4s %3s ", (comp ? gNb : gNa), atomname, group ) a += format("%s%4d %8.3f", (comp ? gChain2 : gChain1), resno, xyz[1] ) a += format("%8.3f%8.3f\n", xyz[2], xyz[3] ) if (comp) gNb++; else gNa++ return a }; # Generate a PDB nucleotide record set # Calls genAtom that writes gNa or gNb function genNT(i, nt, rna, comp) { # From constructed nucleotides var P0 = [0.000, 0.000, 0.000] var OP1= [-0.973,0.363,-1.067] var OP2= [0.297,-1.428, 0.272] var O5p= [1.351, 0.795,-0.286] var C5p= [1.345, 2.211,-0.125] var C4p= [2.732, 2.786,-0.255] var O4p= [3.413, 2.900, 1.019] var C3p= [3.670, 2.020,-1.178] var O3p= [4.269, 2.960,-2.051] var C2p= [4.717, 1.445,-0.238] var O2p= [6.046, 1.365,-0.884] var C1p= [4.758, 2.505, 0.846] var N1ct= [5.277, 2.056, 2.143] var C2ct= [6.236, 2.836, 2.740] var O2ct= [6.670, 3.853, 2.230] var N3ct= [6.674, 2.381, 3.958] var C4ct= [6.256, 1.245, 4.622] var NO4ct=[6.726, 0.972, 5.728] var C5ct= [5.255, 0.455, 3.924] var C6ct= [4.820, 0.900, 2.737] var nC7ct=[4.762,-0.811, 4.551] var N9ag= [5.256, 2.091, 2.152] var C8ag= [4.867, 1.016, 2.913] var N7ag= [5.532, 0.894, 4.035] var C5ag= [6.425, 1.959, 4.013] var C6ag= [7.401, 2.391, 4.922] var NO6ag=[7.656, 1.780, 6.081] var N1ag= [8.118, 3.493, 4.599] var C2ag= [7.865, 4.104, 3.438] var nN2ag=[8.616, 5.197, 3.181] var N3ag= [6.968, 3.796, 2.503] var C4ag= [6.271, 2.701, 2.856] # Build PDB atom records common to all NTs var n3 = kNt3from1[nt] if (n3 = "") { n3 = " D?" } if (rna) { if (n3 == " DD") { n3 = " D" } else { n3 = n3.replace("D", " ") } } var a = genAtom(" P ", n3, i, P0, comp) a += genAtom(" OP1", n3, i, OP1, comp) a += genAtom(" OP2", n3, i, OP2, comp) a += genAtom(" O5'", n3, i, O5p, comp) a += genAtom(" C5'", n3, i, C5p, comp) a += genAtom(" C4'", n3, i, C4p, comp) a += genAtom(" O4'", n3, i, O4p, comp) a += genAtom(" C3'", n3, i, C3p, comp) a += genAtom(" O3'", n3, i, O3p, comp) a += genAtom(" C2'", n3, i, C2p, comp) a += genAtom(" C1'", n3, i, C1p, comp) if (rna) { a += genAtom(" O2'", n3, i, O2p, comp) } # Now add NT specific atom records switch (nt) { case 'A' : a += genAtom(" N9 ", n3, i, N9ag, comp) a += genAtom(" C8 ", n3, i, C8ag, comp) a += genAtom(" N7 ", n3, i, N7ag, comp) a += genAtom(" C5 ", n3, i, C5ag, comp) a += genAtom(" C6 ", n3, i, C6ag, comp) a += genAtom(" N6 ", n3, i, NO6ag, comp) a += genAtom(" N1 ", n3, i, N1ag, comp) a += genAtom(" C2 ", n3, i, C2ag, comp) a += genAtom(" N3 ", n3, i, N3ag, comp) a += genAtom(" C4 ", n3, i, C4ag, comp) break; case 'C' : a += genAtom(" N1 ", n3, i, N1ct, comp) a += genAtom(" C2 ", n3, i, C2ct, comp) a += genAtom(" O2 ", n3, i, O2ct, comp) a += genAtom(" N3 ", n3, i, N3ct, comp) a += genAtom(" C4 ", n3, i, C4ct, comp) a += genAtom(" N4 ", n3, i, NO4ct, comp) a += genAtom(" C5 ", n3, i, C5ct, comp) a += genAtom(" C6 ", n3, i, C6ct, comp) break; case 'X' : case 'G' : a += genAtom(" N9 ", n3, i, N9ag, comp) a += genAtom(" C8 ", n3, i, C8ag, comp) a += genAtom(" N7 ", n3, i, N7ag, comp) a += genAtom(" C5 ", n3, i, C5ag, comp) a += genAtom(" C6 ", n3, i, C6ag, comp) a += genAtom(" O6 ", n3, i, NO6ag, comp) a += genAtom(" N1 ", n3, i, N1ag, comp) a += genAtom(" C2 ", n3, i, C2ag, comp) a += genAtom(" N2 ", n3, i, nN2ag, comp) a += genAtom(" N3 ", n3, i, N3ag, comp) a += genAtom(" C4 ", n3, i, C4ag, comp) break; case 'T' : a += genAtom(" N1 ", n3, i, N1ct, comp) a += genAtom(" C2 ", n3, i, C2ct, comp) a += genAtom(" O2 ", n3, i, O2ct, comp) a += genAtom(" N3 ", n3, i, N3ct, comp) a += genAtom(" C4 ", n3, i, C4ct, comp) a += genAtom(" O4 ", n3, i, NO4ct, comp) a += genAtom(" C5 ", n3, i, C5ct, comp) a += genAtom(" C6 ", n3, i, C6ct, comp) a += genAtom(" C7 ", n3, i, nC7ct, comp) break; case 'D' : case 'U' : a += genAtom(" N1 ", n3, i, N1ct, comp) a += genAtom(" C2 ", n3, i, C2ct, comp) a += genAtom(" O2 ", n3, i, O2ct, comp) a += genAtom(" N3 ", n3, i, N3ct, comp) a += genAtom(" C4 ", n3, i, C4ct, comp) a += genAtom(" O4 ", n3, i, NO4ct, comp) a += genAtom(" C5 ", n3, i, C5ct, comp) a += genAtom(" C6 ", n3, i, C6ct, comp) break; default : break; } return a }; # Rotate a1 on a2 in the plane of a1, a2 and a3 to the given angle # a1 and all connected except by a2 must be selected function setAngle (a1, a2, a3, toangle) { var v1 = ({(chain=gChain1) and (atomno=a1)}.xyz - {(chain=gChain1) and (atomno=a2)}.xyz) var v2 = ({(chain=gChain1) and (atomno=a3)}.xyz - {(chain=gChain1) and (atomno=a2)}.xyz) var axis = cross(v1, v2) + {(chain=gChain1) and (atomno=a2)}.xyz var curangle = angle({(chain=gChain1) and (atomno=a1)}, {(chain=gChain1) and (atomno=a2)}, {(chain=gChain1) and (atomno=a3)}) rotateselected @axis {(chain=gChain1) and (atomno=a2)} @{curangle-toangle} } # Set the dihedral to the given angle # a1 (or a4) and all connected except by a2 (or a3) must be selected # If selected < unselected ==> a2 < a3 and vice versa function setDihedral (a1, a2, a3, a4, toangle) { var curangle = angle({(chain=gChain1) and (atomno=a1)}, {(chain=gChain1) and (atomno=a2)}, {(chain=gChain1) and (atomno=a3)}, {(chain=gChain1) and (atomno=a4)}) rotateselected {(chain=gChain1) and (atomno=a2)} {(chain=gChain1) and (atomno=a3)} @{toangle-curangle} } function countAtoms(seq, rna, start, finish) { var ntc = {"A":21, "C":20, "G":22, "T":20, "U":19} var cnt = 0 for (var i = start; i <= finish; i++) { cnt += (ntc[seq[i]] + (rna ? 1 : 0)) } return cnt } # Generate a helix function genHelixStrand(gSeq, reverse, drm, double) { var cha = ":" + gChain1 var chb = ":" + gChain2 var seq = "" if (reverse) { for (var i = gSeq.count; i > 0; i--) { seq += gSeq[i]%9999%0 } } else { seq = gSeq%9999%0 } var cSeq = "" if (double) { for (var i = seq.count; i > 0; i--) { cSeq += ((seq[i] == 'A') and (drm > 0)) ? "U" : kNtComp[seq[i]] } } var aAtomCount = countAtoms(seq, (drm == 1), 1, seq.count) var bAtomCount = countAtoms(cSeq, (drm > 0), 1, cSeq.count) gNa = 1 # global new P atom index for chain A gNb = 0 if (double) { gNb = (aAtomCount + bAtomCount - countAtoms(cSeq, (drm>0), cSeq.count, cSeq.count)) # last P in cSeq } # Find last linkable P if any var aResno = 1 var pNa = 1 # previous gNa for (var i = all.count; i > 0; i--) { # If A strand found at {0,0,0} if (distance({atomno=i}, {0,0,0}) < 0.1) { if ({atomno=i}.chain == gChain1) { # Add to existing strand echo "Adding to existing strand..." pNa = i aResno = {chain=gChain1}.resno.max + 1 gNa = {chain=gChain1}.atomno.max + 1 gNb += gNa # Bump up all B chain atomno and resno # KLUDGE to work-around of Jmol's lack of resno rewrite savNb = gNb gNb = aAtomCount + bAtomCount + gNa gA = "data \"append nt\"\n" # global PDB atom record for (j = 1; j <= all.atomno.max; j++) { if ({atomno=j}.chain == gChain2) { gA += genAtom({atomno=j}.atomName, {atomno=j}.group, ({atomno=j}.resno+seq.count+cSeq.count), array({atomno=j}.x, {atomno=j}.y, {atomno=j}.z), true) } } gA += "end \"append nt\"" delete @chb script inline @{gA} # <== new atoms added here gNb = savNb break; } } } var bResno = aResno + seq.count + cSeq.count - 1 var nNa = gNa # new P var nNb = 0#bBase # new comp P # For each NT set appendnew false for (var i = 1; i <= seq.count; i++) { if (seq[i] == "") { continue } # Move polynucleotide O3p to bond distance 1.59 from new nt P var pO3 = { -0.759, 0.925, 1.048} if (double) { select (@cha or @chb) } else { select (@cha) } if ((i + aResno) > 2) { var nO3 = {@cha and (atomno=@{pNa+8})}.xyz var xyz = @{pO3 - nO3} translateselected @xyz } # Gen NT ================================================== gA = "data \"append nt\"\n" # global PDB atom record gA += genNT(aResno, seq[i], (drm == 1), FALSE); # gNa updated if (double) { nNb = gNb var nti = cSeq.count-i+1 gA += genNT(bResno, cSeq[nti], (drm > 0), TRUE); # gNb++ if (i > 0) { gNb -= countAtoms(cSeq, (drm>0), nti-1, nti) } } gA += "end \"append nt\"" script inline @{gA} # <== new atoms added here # Flip comp to comp strand if (double) { select @{"" + bResno + chb} var v1={8.238, 2.809, 6.004} var v2={8.461, 4.646, 4.125} rotateSelected @v2 @v1 180.0 } # If any older NTs if ((i + aResno) > 2) { # Set the angles between the new NT and the old NTs select (@cha and (atomno < nNa) or (@chb and (resno != bResno))) setAngle(nNa, pNa+8, pNa+7, 120.0) select (@cha and (atomno < @{nNa+3}) or (@chb and (resno != bResno))) setDihedral(nNa+4, nNa+3, nNa, pNa+8, kC5O5PO3) select (@cha and (atomno < nNa) or (@chb and (resno != bResno))) setDihedral(nNa+3, nNa, pNa+8, pNa+7, kO5PO3C3) setDihedral(nNa, pNa+8, pNa+7, pNa+5, kPO3C3C4) } # Step new and previous N aResno++; bResno-- pNa = nNa nNa = gNa; nNb = gNb } # Make the nucleotide bonds connect # Clean up select all # If double, convert to A-form if RNA or mixed else B-form if (double) { try { script $SCRIPT_PATH$toabNT.spt p = prompt(format("Convert to %s-form?", ((drm > 0) ? "A" : "B")), "Yes|No", TRUE) if (p = "Yes") { toabNtAuto(gChain1, (drm > 0)) } } catch { } } } # Generate a helix or two function plicoGenHelix(gSeq) { if (gPlicoRecord != "") { var g = format("show file \"%s\"", gPlicoRecord) var ls = script(g) if (ls.find("FileNotFoundException")) { ls = "" } ls += format("plicoGenHelix(\"%s\");", gSeq) write var ls @gPlicoRecord } var single = FALSE var reverse = FALSE var drm = 0 var done = FALSE gSeq = gSeq%9999%0 print format ("Seq=%s", gSeq) if (gSeq[2] == ':') { gChain1 = gSeq[1] gSeq = gSeq[3][9999] } else if (gSeq[3] == ':') { gChain1 = gSeq[1] gChain2 = gSeq[2] gSeq = gSeq[4][9999] } while (done == FALSE) { done = TRUE; if (gSeq[1] == 'S') { single = TRUE; done = FALSE; } else if (gSeq[1] == '3') { reverse = TRUE; done = FALSE; } else if (gSeq[1] == 'R') { drm = 1; done = FALSE; } else if (gSeq[1] == 'M') { drm = 2; done = FALSE; } if (done == FALSE) { gSeq = gSeq[2][9999] } } # Generate genHelixStrand(gSeq, reverse, drm, single ? FALSE : TRUE) } function plicoGenNT { echo Generating Nucleotide Helix # Get the sequence from the user gSeq = prompt("Enter NT sequence (<3RSM>ACGTU)", "")%9999%0 if ((gSeq != "NULL") and (gSeq.count > 0)) { plicoGenHelix(gSeq) } } # end of polymeraze.spt